login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A111111 Number of simple permutations of degree n. 11
1, 2, 0, 2, 6, 46, 338, 2926, 28146, 298526, 3454434, 43286526, 583835650, 8433987582, 129941213186, 2127349165822, 36889047574274, 675548628690430, 13030733384956418, 264111424634864638, 5612437196153963522, 124789500579376435198, 2897684052921851965442 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

A permutation is simple if the only intervals that are mapped onto intervals are the singletons and [1..n].

For example, the permutation

1234567

2647513

is not simple since it maps [2..5] onto [4..7].

In other words, a permutation [1 ... n] -> [p_1 p_2 ... p_n] is simple if there is no string of consecutive numbers [i_1 ... i_k] which is mapped onto a string of consecutive numbers [p_i_1 ... p_i_k] except for the strings of length k = 1 or n.

REFERENCES

Corteel, Sylvie; Louchard, Guy; and Pemantle, Robin, Common intervals of permutations. in Mathematics and Computer Science. III, 3--14, Trends Math., Birkhuser, Basel, 2004.

S. Kitaev, Patterns in Permutations and Words, Springer-Verlag, 2011. see p. 399 Table A.7

LINKS

T. D. Noe, Table of n, a(n) for n = 1..100

M. H. Albert and M. D. Atkinson, Simple permutations and pattern restricted permutations, Discr. Math., 300 (2005), 1-15.

M. H. Albert, M. D. Atkinson and M. Klazar, The enumeration of simple permutations, Journal of Integer Sequences 6 (2003), Article 03.4.4, 18 pages.

Joerg Arndt, All simple permutations for n <= 6

Michael Borinsky, Generating asymptotics for factorially divergent sequences, arXiv preprint arXiv:1603.01236 [math.CO], 2016.

M. Bouvel, M. Mishna, C. Nicaud, Some simple varieties of trees arising in permutation analysis, FPSAC 2013 Paris, France DMTCS Proc. AS, 2013, 855-866.

Robert Brignall, Sophie Huczynska, Vincent Vatter, Simple permutations and algebraic generating functions, arXiv:math/0608391 [math.CO], (2006).

R. Brignall, S. Huczynska, V. Vatter, Decomposing simple permutations with enumerative consequences, Combinatorica, 28 (2008) 384-400.

Robert Brignall, A Survey of Simple Permutations, arXiv:0801.0963 [math.CO], (18-April-2008)

Sylvie Corteel, Guy Louchard, and Robin Pemantle, Common intervals in permutations, Discrete Math. Theor. Comput. Sci. 8 (2006), no. 1, 189-216.

Scott Garrabrant and Igor Pak, Pattern Avoidance is Not P-Recursive, preprint, 2015.

V. Jelínek, P. Valtr, Splittings and Ramsey Properties of Permutation Classes, arXiv preprint arXiv:1307.0027 [math.CO], 2013.

D. Oudrar, M. Pouzet, Profile and hereditary classes of ordered relational structures, arXiv preprint arXiv:1409.1108 [math.CO], 2014.

Djamila Oudrar, Sur l'énumération de structures discrètes, une approche par la théorie des relations, Thesis (in French), arXiv:1604.05839 [math.CO], 2016.

FORMULA

a(n) = -A059372(n)+2(-1)^(n+1).

a(n) ~ n!*(1-4/n)/e^2. - Jon E. Schoenfield, Aug 05 2006

a(n) ~ n!*exp(-2)*(1 - 4/n + 2/(n*(n-1)) - (40/3)/(n*(n-1)*(n-2)) - ...). Coefficients are given by A280780(n)/A280781(n).- Gheorghe Coserea, Jan 23 2017

EXAMPLE

G.f. = x + 2*x^2 + 2*x^4 + 6*x^5 + 46*x^6 + 338*x^7 + 2926*x^8 + ...

The simple permutations of lowest degree are 1, 12, 21, 2413, 3142.

MATHEMATICA

nmax = 20; t[n_, k_] := t[n, k] = Sum[(m + 1)!*t[n - m - 1, k - 1], {m, 0, n - k}]; t[n_, 1] = n!; t[n_, n_] = 1; tnk = Table[t[n, k], {n, 1, nmax}, {k, 1, nmax}]; A111111 = -Inverse[tnk][[All, 1]] + 2*(-1)^Range[0, nmax - 1]; A111111[[2]] = 2;

A111111 (* Jean-François Alcover, Jul 13 2016 *)

PROG

(PARI) simple(v)=for(i=1, #v-1, for(j=i+1, #v, my(u=vecsort(v[i..j])); if(u[#u]-u[1]==#u-1 && #u<#v, return(0)))); 1

a(n)=sum(i=0, n!-1, simple(numtoperm(n, i))) \\ Charles R Greathouse IV, Nov 05 2013

seq(N) = Vec(2 + 2*x^2 - 2/(1+x) - serreverse(x*Ser(vector(N, n, n!))));  \\ Gheorghe Coserea, Jan 22 2017

CROSSREFS

Cf. A059372, A280780.

Sequence in context: A057980 A242840 A081081 * A185343 A161014 A235712

Adjacent sequences:  A111108 A111109 A111110 * A111112 A111113 A111114

KEYWORD

nonn,nice

AUTHOR

N. J. A. Sloane, Oct 14 2005

EXTENSIONS

Incorrect statement removed by Jay Pantone, Jul 16 2014

Word "fixed" removed by Franklin T. Adams-Watters, Jul 22 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 17 22:51 EST 2019. Contains 319251 sequences. (Running on oeis4.)