login
A111108
a(n) = A001333(n) - (-2)^(n-1), n > 0.
2
0, 5, 3, 25, 25, 131, 175, 705, 1137, 3875, 7095, 21649, 43225, 122435, 259423, 698625, 1541985, 4011971, 9107175, 23143825, 53559817, 133933475, 314086735, 776787009, 1838300625, 4512108515, 10745077143, 26237143825, 62749602745
OFFSET
1,2
COMMENTS
Conjecture: for odd primes p, p divides a(p). Note that (a(n)) and A001333 have different offsets.
The conjecture follows from the formula A001333(n) = ((1-sqrt(2))^n + (1+sqrt(2))^n)/2. - Max Alekseyev, Oct 16 2005
FORMULA
From Colin Barker, Apr 30 2019: (Start)
G.f.: x^2*(5 + 3*x) / ((1 + 2*x)*(1 - 2*x - x^2)).
a(n) = 5*a(n-2) + 2*a(n-3) for n>3.
(End)
MATHEMATICA
LinearRecurrence[{0, 5, 2}, {0, 5, 3}, 30] (* Harvey P. Dale, May 03 2022 *)
PROG
(PARI) concat(0, Vec(x^2*(5 + 3*x) / ((1 + 2*x)*(1 - 2*x - x^2)) + O(x^35))) \\ Colin Barker, May 01 2019
CROSSREFS
Sequence in context: A266385 A354091 A032532 * A038245 A178640 A273153
KEYWORD
easy,nonn
AUTHOR
Creighton Dement, Oct 14 2005
STATUS
approved