login
A111073
Numbers n such that the sum of the smallest and largest prime factors of n divides n.
1
4, 8, 16, 32, 64, 126, 128, 252, 256, 378, 390, 504, 512, 630, 756, 780, 798, 882, 1008, 1024, 1134, 1150, 1170, 1260, 1512, 1560, 1596, 1764, 1890, 1950, 2016, 2046, 2048, 2268, 2300, 2340, 2394, 2520, 2646, 2730, 2886, 3024, 3120, 3150, 3192, 3402, 3450
OFFSET
1,1
COMMENTS
All terms are even. - Harvey P. Dale, Sep 03 2015
Powers of 2 and numbers of the form 2 * p * (p + 2) * k where p is prime, p+2 isn't and k > 0 is p-smooth. - David A. Corneth, Sep 28 2019
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harvey P. Dale)
EXAMPLE
126 = 2*3^2*7, with smallest and largest prime factors 2 and 7, sum = 9, and 126 is divisible by 9; so 126 is in the sequence.
MATHEMATICA
slpdQ[n_]:=Module[{f=Transpose[FactorInteger[n]][[1]]}, Divisible[n, Total[ {First[f], Last[f]}]]]; Select[Range[4000], slpdQ] (* Harvey P. Dale, Sep 03 2015 *)
PROG
(PARI) lista(n) = {for (i=2, n, my(fac = factor(i), s = fac[1, 1] + fac[matsize(fac)[1], 1]); if (i % s == 0, print1(i, ", ")); ); } \\ Michel Marcus, May 18 2013
CROSSREFS
Sequence in context: A108569 A342868 A196875 * A298807 A353500 A005934
KEYWORD
easy,nonn
AUTHOR
Joseph L. Pe, Oct 10 2005
STATUS
approved