login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A111072 Write the digit string 0123456789, repeated infinitely many times. Then, starting from the first "0" digit at the left end, move to the right by one digit (to the "1"), then two digits (to the "3"), then three digits (to the "6"), four digits ("0"), five digits ("5"), and so on. Partial sums of the digits thus reached are 0, 1, 4, 10, 10, 15, ... 4
0, 1, 4, 10, 10, 15, 16, 24, 30, 35, 40, 46, 54, 55, 60, 60, 66, 69, 70, 70, 70, 71, 74, 80, 80, 85, 86, 94, 100, 105, 110, 116, 124, 125, 130, 130, 136, 139, 140, 140, 140, 141, 144, 150, 150, 155, 156, 164, 170, 175, 180, 186, 194, 195, 200, 200, 206, 209, 210 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The first differences 0, 1, 3, 6, 0, 5, 1, 8, 6, 5, 5, 6, 8, 1, 5, 0, 6, 3, 1, 0, etc. are in A008954.

REFERENCES

G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008, p. 62.

LINKS

Michael De Vlieger, Table of n, a(n) for n = 0..10000

J. Bokowski & N. J. A. Sloane, Emails, June 1994

FORMULA

a(n+1) = a(n) + (a(n) - a(n-1) + (n+1) mod 10) mod 10, with a(0)=0, a(1)=1.

G.f.: x*(x^12+3*x^11+6*x^10+5*x^8+5*x^6+5*x^4+6*x^2+3*x+1) / (x^16 -x^15 -x^11 +x^10 +x^6 -x^5 -x +1). - Alois P. Heinz, Jan 23 2021

EXAMPLE

a(9) = 35 because a(8) - a(7) + (9 mod 10) = 30 - 24 + 9 = 15 and a(8) + (15 mod 10) = 30 + 5 = 35.

Jumping we move to the numbers 0, 1, 3, 6, 0, 5, 1, 8, 6, 5, 5, 6, 8, 1, 5, 0, 6, 3, 1, 0, 0, 1, 3, 6, 0, 5, 1, 8, 6, etc. Summing the numbers we obtain 0, 0+1 = 1, 1+3 = 4, 4+6 = 10, 10+0 = 10, 10+5 = 16, etc.

MAPLE

ANM:=proc(N) global anplus1, anminus1; local an, i, anpolus; anminus1:=0; an:=1; print (anminus1, an); for i from 2 by 1 to N do anplus1:=an+((an-anminus1+ i mod 10) mod 10); print(anplus1); anminus1:=an; an:=anplus1; od; end: ANM(100);

# second Maple program:

a:= proc(n) option remember; `if`(n=0, 0, a(n-1)+

      [0, 1, 3, 6, 0, 5, 1, 8, 6, 5, 5, 6, 8, 1, 5, 0, 6, 3, 1, 0, 0]

      [1+irem(n, 20)])

    end:

seq(a(n), n=0..60);  # Alois P. Heinz, Jan 23 2021

MATHEMATICA

Fold[Append[#1, #1[[-1]] + Mod[(#1[[-1]] - #1[[-2]] + Mod[#2, 10]), 10]] &, {0, 1}, Range[2, 58]] (* Michael De Vlieger, Nov 05 2017 *)

CROSSREFS

Cf. A008954.

Sequence in context: A081547 A264272 A264257 * A189895 A310333 A180862

Adjacent sequences:  A111069 A111070 A111071 * A111073 A111074 A111075

KEYWORD

nonn,base,easy

AUTHOR

Giorgio Balzarotti & Paolo P. Lava, Oct 10 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 14:10 EST 2021. Contains 349430 sequences. (Running on oeis4.)