login
A111071
Difference between the product of two consecutive primes and the next prime.
6
1, 8, 24, 64, 126, 202, 300, 408, 636, 862, 1106, 1474, 1716, 1968, 2432, 3066, 3532, 4016, 4684, 5104, 5684, 6468, 7290, 8532, 9694, 10296, 10912, 11550, 12190, 14220, 16500, 17808, 18894, 20560, 22342, 23544, 25424, 27048, 28712, 30786, 32208
OFFSET
1,2
FORMULA
a(n) = prime(n)*prime(n+1)-prime(n+2) = A006094(n)-A000040(n+2) = 2*A152527(n-1).
EXAMPLE
a(4)= prime(4)*prime(5)-prime(6) = 7*11-13=64.
MAPLE
seq(ithprime(n)*ithprime(n+1)-ithprime(n+2), n=1..50); # Emeric Deutsch, Oct 10 2005
MATHEMATICA
f[n_] := Prime[n]Prime[n + 1] - Prime[n + 2]; Table[ f[n], {n, 41}] (* Robert G. Wilson v, Oct 10 2005 *)
#[[1]]*#[[2]]-#[[3]]&/@Partition[Prime[Range[50]], 3, 1] (* Harvey P. Dale, Aug 06 2015 *)
PROG
(PARI) main(size)=my(n); vector(size, n, prime(n)*prime(n+1)-prime(n+2)) /* Anders Hellström, Jul 16 2015 */
(Magma) [NthPrime(n)*NthPrime(n+1)-NthPrime(n+2): n in [1..50]]; // Vincenzo Librandi, Jul 18 2015
CROSSREFS
Cf. A000040.
Sequence in context: A066497 A205963 A208895 * A090336 A364245 A200253
KEYWORD
nonn
AUTHOR
Christopher M. Tomaszewski (cmt1288(AT)comcast.net), Oct 09 2005
EXTENSIONS
More terms from Robert G. Wilson v and Emeric Deutsch, Oct 10 2005
STATUS
approved