|
|
A111064
|
|
Numbers n such that the sum of the digits of the n-th Fibonacci number written in bases 2, 3, 5 and 7 is prime.
|
|
0
|
|
|
7, 8, 10, 17, 47, 61, 70, 170, 185, 299, 766, 950, 1247, 1669, 1879, 2063, 2090, 2701, 3071, 5809, 6190, 7057, 7409, 8410, 12754, 13303, 13421, 14533, 16250, 18793, 24766, 24895, 28594, 28870, 29093, 29189, 30647, 31481, 36334, 38123, 38957
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Table of n, a(n) for n=1..41.
|
|
EXAMPLE
|
21 is the 8th Fibonacci number. Written in bases 2,3,5,7 we obtain 10101, 210, 41 and 30. The sum of the digits of each of this representations is prime, so 8 is an element of the sequence.
|
|
MATHEMATICA
|
fQ[n_] := Union@PrimeQ[Plus @@@ IntegerDigits[ Fibonacci@n, {2, 3, 5, 7}]] == {True}; Select[ Range[39285], fQ[ # ] &] (* Robert G. Wilson v *)
|
|
PROG
|
(MuPAD) for n from 1 to 1500 do a := numlib::fibonacci(n); if numlib::proveprime(numlib::sumOfDigits(a, 2)) = TRUE then if numlib::proveprime(numlib::sumOfDigits(a, 3)) = TRUE then if numlib::proveprime(numlib::sumOfDigits(a, 5)) = TRUE then if numlib::proveprime(numlib::sumOfDigits(a, 7)) = TRUE then print(n); end_if; end_if; end_if; end_if; end_for;
|
|
CROSSREFS
|
Cf. A004685, A004686, A004688, A004690.
Sequence in context: A127164 A153972 A286420 * A071117 A054221 A195240
Adjacent sequences: A111061 A111062 A111063 * A111065 A111066 A111067
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Stefan Steinerberger, Nov 12 2005
|
|
EXTENSIONS
|
More terms from Robert G. Wilson v, Nov 14 2005
|
|
STATUS
|
approved
|
|
|
|