login
Product{k=1 to n} (A005117(k)), the product of the first n squarefree positive integers.
9

%I #20 May 14 2021 22:39:02

%S 1,2,6,30,180,1260,12600,138600,1801800,25225200,378378000,6432426000,

%T 122216094000,2566537974000,56463835428000,1298668214844000,

%U 33765373585944000,979195833992376000,29375875019771280000

%N Product{k=1 to n} (A005117(k)), the product of the first n squarefree positive integers.

%C Do all terms belong to A242031 (weakly decreasing prime signature)? - _Gus Wiseman_, May 14 2021

%H Charles R Greathouse IV, <a href="/A111059/b111059.txt">Table of n, a(n) for n = 1..417</a>

%e Since the first 6 squarefree positive integers are 1, 2, 3, 5, 6, 7, the 6th term of the sequence is 1*2*3*5*6*7 = 1260.

%e From _Gus Wiseman_, May 14 2021: (Start)

%e The sequence of terms together with their prime signatures begins:

%e 1: ()

%e 2: (1)

%e 6: (1,1)

%e 30: (1,1,1)

%e 180: (2,2,1)

%e 1260: (2,2,1,1)

%e 12600: (3,2,2,1)

%e 138600: (3,2,2,1,1)

%e 1801800: (3,2,2,1,1,1)

%e 25225200: (4,2,2,2,1,1)

%e 378378000: (4,3,3,2,1,1)

%e 6432426000: (4,3,3,2,1,1,1)

%e 122216094000: (4,3,3,2,1,1,1,1)

%e (End)

%t Rest[FoldList[Times,1,Select[Range[40],SquareFreeQ]]] (* _Harvey P. Dale_, Jun 14 2011 *)

%o (PARI) m=30;k=1;for(n=1,m,if(issquarefree(n),print1(k=k*n,",")))

%Y A005117 lists squarefree numbers.

%Y A006881 lists squarefree semiprimes.

%Y A072047 applies Omega to each squarefree number.

%Y A246867 groups squarefree numbers by Heinz weight (row sums: A147655).

%Y A261144 groups squarefree numbers by smoothness (row sums: A054640).

%Y A319246 gives the sum of prime indices of each squarefree number.

%Y A329631 lists prime indices of squarefree numbers (reversed: A319247).

%Y Cf. A001221, A002110, A014466, A070826, A338901, A339360.

%K nonn

%O 1,2

%A _Leroy Quet_, Oct 07 2005

%E More terms from _Klaus Brockhaus_, Oct 08 2005