login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A111049 Triangle T(n,k), 0 <= k <= n, read by rows, given by [1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. 1
1, 1, 1, 1, 3, 2, 1, 6, 9, 4, 1, 11, 27, 25, 8, 1, 20, 70, 100, 65, 16, 1, 37, 170, 330, 325, 161, 32, 1, 70, 399, 980, 1295, 966, 385, 64, 1, 135, 917, 2723, 4515, 4501, 2695, 897, 128, 1, 264, 2076, 7224, 14406, 17976, 14364, 7176, 2049, 256 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
LINKS
FORMULA
T(n, k) = 2^(n-1)binomial(n-1, k-1) + binomial(n-1, k).
Sum_{k=0..n} T(n, k) = 2^(n-1)*(1+2^(n-1)) = A063376(n-1) for n >= 1.
From Peter Bala, Mar 20 2013: (Start)
O.g.f.: (1 - 2*t + x*t*(t-2) + x^2*t^2)/((1 - t*(1+x))*(1 - 2*t*(1+x))) = 1 + (1+x)*t + (1+3*x+2*x^2)*t^2 + ....
E.g.f.: (x + 2*exp((1+x)*t) + x*exp(2*t*(1+x)))/(2*(1+x)) = 1 + (1+x)*t + (1+3*x+2*x^2)*t^2/2! + ....
Recurrence equation: for n >= 1, T(n+1,k) = 2*T*n,k) + 2*T(n,k-1) - binomial(n,k). (End)
From Philippe Deléham, Oct 18 2013: (Start)
G.f.: (1 - 2*x - 2*x*y + x^2*y + x^2*y^2)/(1 - 3*x - 3*x*y + 2*x^2 + 4*x^2*y + 2*x^2*y^2).
T(n,k) = 3*T(n-1,k) + 3*T(n-1,k-1) - 2*T(n-2,k) - 4*T(n-2,k-1) - 2*T(n-2,k-2), T(0,0) = T(1,1) = T(1,0) = T(2,0) = 1, T(2,1) = 3, T(2,2) = 2, T(n,k) = 0 if k > n or if k < 0. (End)
EXAMPLE
Rows begin:
1;
1, 1;
1, 3, 2;
1, 6, 9, 4;
1, 11, 27, 25, 8;
1, 20, 70, 100, 65, 16;
1, 37, 170, 330, 325, 161, 32;
1, 70, 399, 980, 1295, 966, 385, 64;
1, 135, 917, 2723, 4515, 4501, 2695, 897, 128;
1, 264, 2076, 7224, 14406, 17976, 14364, 7176, 2049, 256;
MATHEMATICA
With[{m = 9}, CoefficientList[CoefficientList[Series[(1 - 2*x - 2*x*y + x^2 *y + x^2*y^2)/(1 - 3*x - 3*x*y + 2*x^2 + 4*x^2*y + 2*x^2*y^2), {x, 0 , m}, {y, 0, m} ], x], y]] // Flatten (* Georg Fischer, Feb 17 2020 *)
PROG
(PARI) T(n, k) = if (k<=n, 2^(n-1)*binomial(n-1, k-1)+binomial(n-1, k));
matrix(10, 10, n, k, T(n-1, k-1)) \\ to see the triangle \\ Michel Marcus, Feb 17 2020
CROSSREFS
Sequence in context: A181897 A337977 A212207 * A211955 A088617 A190909
KEYWORD
easy,nonn,tabl
AUTHOR
Philippe Deléham, Oct 07 2005
EXTENSIONS
Wrong a(42) removed by Georg Fischer, Feb 17 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 01:35 EDT 2024. Contains 371964 sequences. (Running on oeis4.)