login
A110985
Decimal expansion of Zeta(Phi).
0
2, 2, 3, 8, 3, 3, 4, 3, 4, 3, 9, 1, 2, 4, 2, 5, 1, 4, 9, 0, 6, 9, 8, 7, 3, 6, 5, 1, 9, 3, 9, 9, 4, 4, 0, 8, 2, 0, 0, 1, 9, 3, 7, 8, 6, 4, 2, 9, 5, 1, 7, 3, 5, 8, 5, 4, 0, 0, 8, 3, 9, 7, 7, 6, 9, 9, 8, 7, 1, 7, 4, 2, 2, 2, 6, 2, 1, 6, 7, 9, 9, 5, 8, 0, 7, 4, 3, 4, 1, 8, 0, 2, 9, 6, 4, 6, 4, 1, 8
OFFSET
1,1
FORMULA
Zeta(s) = Sum(1/n^s, n=1, 2, ..inf). Phi = Golden ratio = (sqrt(5)+1)/2 ~ 1.618033989..
MATHEMATICA
RealDigits[Zeta[GoldenRatio], 10, 120][[1]] (* Harvey P. Dale, Jan 14 2021 *)
PROG
(PARI) zeta2(v, n) = \ v = value, n=number of places { local(y, x, l, z1); z1=zeta(v); l=length(Str(floor(z1))); \ length of the integer part y=Vec(Str(z1)); for(x=1, l, \ to the left of decimal point print1(y[x]", "); ); for(x=l+2, n, print1(y[x]", ") \ to the right of the decimal point ) }
CROSSREFS
Sequence in context: A329955 A099870 A221877 * A153216 A327259 A295943
KEYWORD
easy,nonn,cons
AUTHOR
Cino Hilliard, Sep 30 2005
STATUS
approved