login
a(n) = permanent of an n X n matrix M of zeros and ones defined as follows: if we concatenate the rows of M to form a vector v of length n^2, v_i = 0 if i is a Fibonacci number and v_i = 1, otherwise.
0

%I #10 Sep 11 2024 14:49:28

%S 0,2,10,117,1218,8544,102528,1073328,13174560,167191920,2194456320,

%T 34592423040,566748161280,8894849241600,159020867174400,

%U 3016954215475200,59837217568128000,1189832713214745600

%N a(n) = permanent of an n X n matrix M of zeros and ones defined as follows: if we concatenate the rows of M to form a vector v of length n^2, v_i = 0 if i is a Fibonacci number and v_i = 1, otherwise.

%o (PARI) a(n)={my(A=matrix(n, n, i, j, 1), m=2, f=0); while(m, my(qr=divrem(f, n)); A[qr[1]+1, qr[2]+1]=0; f=fibonacci(m); if(f>n^2, m=0, f--; m++)); matpermanent(A)} \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 14 2007

%Y Cf. A000045.

%K nonn

%O 3,2

%A _Simone Severini_, Sep 25 2005

%E More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), May 14 2007