login
A110914
"Self-convolution mod 3" of central Delannoy numbers (see comment).
0
1, 0, 2, 0, 1, 0, 2, 0, 4, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 4, 0, 2, 0, 4, 0, 8, 0, 4, 0, 2, 0, 4, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 4, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 4, 0, 2, 0, 4, 0, 8, 0, 4, 0, 2, 0, 4, 0, 2, 0, 4, 0, 8, 0, 4, 0, 8, 0, 16, 0, 8, 0, 4, 0, 8, 0, 4, 0, 2, 0, 4, 0, 2, 0, 4, 0, 8, 0, 4
OFFSET
0,3
COMMENTS
a(n) = Sum_{k=0..n} ((b(k)*b(n-k)) mod 3) where b(k) = Sum_{k=0..n} binomial(n,k)*binomial(n+k,k) are the central Delannoy numbers. The formula is obtained using techniques described in the Deutsch-Sagan paper.
LINKS
E. Deutsch and B. E. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, arXiv:math/0407326 [math.CO], 2004.
E. Deutsch and B. E. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, J. Num. Theory 117 (2006), 191-215.
FORMULA
a(2n-1)=0 and a(2n)=2^t_1(n) where t_1(n) denotes the number of 1's in the ternary representation of n (A062756). Recurrence: a(3n)=a(n), a(3n+1)=a(n-1), a(3n+2)=2*a(n).
MATHEMATICA
b[n_] := Sum[Binomial[n, k] Binomial[n + k, k], {k, 0, n}];
a[n_] := Sum[Mod[b[k] b[n - k], 3], {k, 0, n}];
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Feb 17 2019 *)
PROG
(PARI) b(n)=sum(k=0, n, binomial(n, k)*binomial(n+k, k)); a(n)=sum(k=0, n, (b(k)*b(n-k))%3)
CROSSREFS
Cf. A062756.
Sequence in context: A158945 A156667 A178090 * A219200 A341978 A193527
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Oct 04 2005
STATUS
approved