login
G.f.: square root of weight enumerator of [128,8,64] Reed-Muller code RM(1,7).
0

%I #15 May 11 2020 05:43:24

%S 1,127,-8064,1024128,-162578304,28906012800,-5506514149248,

%T 1098926377492608,-226787489583693696,48002619344296837248,

%U -10363606765190978576256,2273363554859188811800704,-505247277362380820188774272,113523427964612752606407049344,-25745094719113893095451450367872

%N G.f.: square root of weight enumerator of [128,8,64] Reed-Muller code RM(1,7).

%H N. Heninger, E. M. Rains and N. J. A. Sloane, <a href="https://arxiv.org/abs/math/0509316">On the Integrality of n-th Roots of Generating Functions</a>, arXiv:math/0509316 [math.NT], 2005-2006; J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.

%F a(n) = (LegendreP(n,-127)+127*LegendreP(n-1,-127))/(1-n) for n>1 (guessed formula). - _Mark van Hoeij_, Apr 23 2010

%o (PARI) a(n) = if(n>1, (pollegendre(n,-127) + 127*pollegendre(n-1,-127))/(1-n), 126*n+1) \\ _Charles R Greathouse IV_, Mar 19 2017

%Y Cf. A110827.

%K sign

%O 0,2

%A _N. J. A. Sloane_ and _Nadia Heninger_ Aug 18 2005