login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110651 n^2 followed by n^4 followed by n^3 followed by n. 1
1, 1, 1, 1, 4, 16, 8, 2, 9, 81, 27, 3, 16, 256, 64, 4, 25, 625, 125, 5, 36, 1296, 216, 6, 49, 2401, 343, 7, 64, 4096, 512, 8, 81, 6561, 729, 9, 100, 10000, 1000, 10, 121, 14641, 1331, 11, 144, 20736, 1728, 12, 169, 28561, 2197, 13, 196, 38416, 2744, 14, 225 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..4000

Index entries for linear recurrences with constant coefficients, signature (0,0,0,5,0,0,0,-10,0,0,0,10,0,0,0,-5,0,0,0,1).

FORMULA

a(n) = (2*n+3-(-1)^n+2*(-1)^((2*n+5-(-1)^n)/4))*(n^3+10*n^2+36*n+124+(n^3+2*n^2-12*n+20)*(-1)^n+(n^3+2*n^2+20*n-12)*(-1)^((2*n+5-(-1)^n)/4)-(n^3+10*n^2+4*n-100)*(-1)^((2*n+7+(-1)^n)/4))/2048. - Luce ETIENNE, Sep 02 2016

G.f.: x*(1+x+x^2+x^3-x^4+11*x^5+3*x^6-3*x^7-x^8+11*x^9-3*x^10+3*x^11 +x^12+x^13-x^14-x^15) / ((1-x)^5*(1+x)^5*(1+x^2)^5). - Colin Barker, Sep 02 2016

MATHEMATICA

Flatten[Table[{n^2, n^4, n^3, n}, {n, 40}]](* Vincenzo Librandi, Feb 06 2013 *)

PROG

(MAGMA) &cat[[n^2, n^4, n^3, n]: n in [1..20]]; // Vincenzo Librandi, Feb 06 2013

(PARI) Vec(x*(1+x+x^2+x^3-x^4+11*x^5+3*x^6-3*x^7-x^8+11*x^9-3*x^10+3*x^11+x^12+x^13-x^14-x^15) / ((1-x)^5*(1+x)^5*(1+x^2)^5) + O(x^30)) \\ Colin Barker, Sep 02 2016

CROSSREFS

Cf. A000463, A109588, A109594.

Sequence in context: A040004 A050080 A187532 * A253890 A115054 A228561

Adjacent sequences:  A110648 A110649 A110650 * A110652 A110653 A110654

KEYWORD

nonn,easy

AUTHOR

Mohammad K. Azarian, Sep 14 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 25 09:30 EDT 2016. Contains 276529 sequences.