This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A110651 n^2 followed by n^4 followed by n^3 followed by n. 1
 1, 1, 1, 1, 4, 16, 8, 2, 9, 81, 27, 3, 16, 256, 64, 4, 25, 625, 125, 5, 36, 1296, 216, 6, 49, 2401, 343, 7, 64, 4096, 512, 8, 81, 6561, 729, 9, 100, 10000, 1000, 10, 121, 14641, 1331, 11, 144, 20736, 1728, 12, 169, 28561, 2197, 13, 196, 38416, 2744, 14, 225 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..4000 Index entries for linear recurrences with constant coefficients, signature (0,0,0,5,0,0,0,-10,0,0,0,10,0,0,0,-5,0,0,0,1). FORMULA a(n) = (2*n+3-(-1)^n+2*(-1)^((2*n+5-(-1)^n)/4))*(n^3+10*n^2+36*n+124+(n^3+2*n^2-12*n+20)*(-1)^n+(n^3+2*n^2+20*n-12)*(-1)^((2*n+5-(-1)^n)/4)-(n^3+10*n^2+4*n-100)*(-1)^((2*n+7+(-1)^n)/4))/2048. - Luce ETIENNE, Sep 02 2016 G.f.: x*(1+x+x^2+x^3-x^4+11*x^5+3*x^6-3*x^7-x^8+11*x^9-3*x^10+3*x^11 +x^12+x^13-x^14-x^15) / ((1-x)^5*(1+x)^5*(1+x^2)^5). - Colin Barker, Sep 02 2016 MATHEMATICA Flatten[Table[{n^2, n^4, n^3, n}, {n, 40}]](* Vincenzo Librandi, Feb 06 2013 *) PROG (MAGMA) &cat[[n^2, n^4, n^3, n]: n in [1..20]]; // Vincenzo Librandi, Feb 06 2013 (PARI) Vec(x*(1+x+x^2+x^3-x^4+11*x^5+3*x^6-3*x^7-x^8+11*x^9-3*x^10+3*x^11+x^12+x^13-x^14-x^15) / ((1-x)^5*(1+x)^5*(1+x^2)^5) + O(x^30)) \\ Colin Barker, Sep 02 2016 CROSSREFS Cf. A000463, A109588, A109594. Sequence in context: A040004 A050080 A187532 * A253890 A115054 A228561 Adjacent sequences:  A110648 A110649 A110650 * A110652 A110653 A110654 KEYWORD nonn,easy AUTHOR Mohammad K. Azarian, Sep 14 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.