

A110649


Every 2nd term of A084067 where the selfconvolution 2nd power is congruent modulo 8 to A084067, which consists entirely of numbers 1 through 12.


5



1, 6, 9, 4, 12, 6, 6, 12, 12, 8, 9, 12, 12, 6, 6, 10, 6, 12, 2, 6, 6, 12, 12, 12, 8, 12, 3, 4, 12, 12, 9, 6, 6, 4, 12, 12, 2, 6, 3, 6, 3, 6, 7, 6, 9, 8, 9, 12, 12, 12, 3, 12, 3, 6, 2, 6, 12, 2, 6, 6, 3, 12, 9, 4, 3, 12, 4, 12, 6, 2, 3, 12, 9, 6, 6, 6, 3, 6, 10, 6, 6, 6, 9, 6, 12, 12, 9, 2, 12, 6, 9
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


LINKS

Table of n, a(n) for n=0..90.


EXAMPLE

A(x) = 1 + 6*x + 9*x^2 + 4*x^3 + 12*x^4 + 6*x^5 +...
A(x)^2 = 1 + 12*x + 54*x^2 + 116*x^3 + 153*x^4 + 228*x^5 +...
A(x)^2 (mod 8) = 1 + 4*x + 6*x^2 + 4*x^3 + x^4 + 4*x^5 +...
G(x) = 1 + 12*x + 6*x^2 + 4*x^3 + 9*x^4 + 12*x^5 + 4*x^6 +...
where G(x) is the g.f. of A084067.


PROG

(PARI) {a(n)=local(d=2, m=12, A=1+m*x); for(j=2, d*n, for(k=1, m, t=polcoeff((A+k*x^j+x*O(x^j))^(1/m), j); if(denominator(t)==1, A=A+k*x^j; break))); polcoeff(A, d*n)}


CROSSREFS

Cf. A084067, A110645, A110646, A110647, A110648.
Sequence in context: A273816 A021063 A216638 * A037024 A309343 A254276
Adjacent sequences: A110646 A110647 A110648 * A110650 A110651 A110652


KEYWORD

nonn


AUTHOR

Robert G. Wilson v and Paul D. Hanna, Aug 30 2005


STATUS

approved



