login
A110642
Every 5th term of A083950 where the self-convolution 5th power is congruent modulo 25 to A083950, which consists entirely of numbers 1 through 10.
2
1, 2, 3, 2, 5, 8, 8, 4, 7, 2, 7, 4, 7, 2, 9, 6, 8, 8, 8, 8, 5, 8, 6, 2, 10, 4, 1, 4, 5, 6, 5, 10, 4, 4, 6, 10, 8, 4, 2, 8, 3, 10, 6, 10, 2, 8, 2, 6, 6, 4, 2, 10, 4, 8, 4, 10, 3, 2, 6, 2, 4, 2, 3, 8, 10, 10, 3, 6, 10, 10, 6, 8, 5, 8, 6, 4, 10, 2, 2, 4, 8, 2, 10, 4, 9, 6, 1, 6, 5, 10, 9, 8, 2, 8, 10, 4, 7, 8
OFFSET
0,2
EXAMPLE
A(x) = 1 + 2*x + 3*x^2 + 2*x^3 + 5*x^4 + 8*x^5 + 8*x^6 +...
A(x)^5 = 1 + 10*x + 55*x^2 + 210*x^3 + 635*x^4 + 1652*x^5 +...
A(x)^5 (mod 25) = 1 + 10*x + 5*x^2 + 10*x^3 + 10*x^4 + 2*x^5 +...
G(x) = 1 + 10*x + 5*x^2 + 10*x^3 + 10*x^4 + 2*x^5 + 5*x^6 +...
where G(x) is the g.f. of A083950.
PROG
(PARI) {a(n)=local(d=5, m=10, A=1+m*x); for(j=2, d*n, for(k=1, m, t=polcoeff((A+k*x^j+x*O(x^j))^(1/m), j); if(denominator(t)==1, A=A+k*x^j; break))); polcoeff(A, d*n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved