This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A110638 Every 2-nd term of A083948 where the self-convolution 2-nd power is congruent modulo 16 to A083948, which consists entirely of numbers 1 through 8. 2
 1, 4, 2, 4, 7, 8, 4, 8, 3, 8, 2, 8, 1, 8, 8, 8, 6, 4, 6, 4, 6, 8, 4, 8, 4, 8, 2, 8, 8, 8, 8, 8, 7, 8, 6, 8, 8, 4, 6, 4, 8, 8, 6, 8, 7, 4, 8, 4, 3, 4, 4, 4, 3, 8, 6, 8, 3, 8, 8, 8, 1, 8, 4, 8, 4, 8, 8, 8, 3, 8, 6, 8, 6, 8, 2, 8, 5, 8, 8, 8, 1, 8, 4, 8, 6, 4, 4, 4, 6, 8, 6, 8, 1, 4, 8, 4, 1, 8, 6, 8, 5, 4, 8, 4, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS EXAMPLE A(x) = 1 + 4*x + 2*x^2 + 4*x^3 + 7*x^4 + 8*x^5 + 4*x^6 +... A(x)^2 = 1 + 8*x + 20*x^2 + 24*x^3 + 50*x^4 + 88*x^5 +... A(x)^2 (mod 16) = 1 + 8*x + 4*x^2 + 8*x^3 + 2*x^4 + 8*x^5 +... G(x) = 1 + 8*x + 4*x^2 + 8*x^3 + 2*x^4 + 8*x^5 + 4*x^6 +... where G(x) is the g.f. of A083948. PROG (PARI) {a(n)=local(d=2, m=8, A=1+m*x); for(j=2, d*n, for(k=1, m, t=polcoeff((A+k*x^j+x*O(x^j))^(1/m), j); if(denominator(t)==1, A=A+k*x^j; break))); polcoeff(A, d*n)} CROSSREFS Cf. A083948, A110636, A110637. Sequence in context: A096428 A091007 A180156 * A154995 A154973 A154793 Adjacent sequences:  A110635 A110636 A110637 * A110639 A110640 A110641 KEYWORD nonn AUTHOR Robert G. Wilson v and Paul D. Hanna, Aug 30 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .