login
A110634
Every 2nd term of A083946 where the self-convolution 2nd power is congruent modulo 4 to A083946, which consists entirely of numbers 1 through 6.
2
1, 3, 3, 6, 3, 6, 6, 3, 6, 3, 6, 3, 6, 3, 6, 2, 6, 6, 6, 3, 6, 4, 6, 6, 4, 3, 3, 6, 3, 3, 3, 3, 6, 2, 3, 3, 1, 6, 6, 2, 6, 6, 3, 3, 6, 1, 6, 6, 6, 3, 6, 6, 3, 6, 1, 6, 6, 2, 3, 6, 6, 3, 3, 4, 6, 6, 2, 3, 6, 4, 3, 6, 2, 6, 3, 6, 3, 6, 2, 6, 6, 4, 3, 3, 2, 3, 3, 6, 3, 3, 5, 3, 3, 2, 6, 6, 2, 3, 6, 1, 3, 3, 5, 3, 6
OFFSET
0,2
EXAMPLE
A(x) = 1 + 3*x + 3*x^2 + 6*x^3 + 3*x^4 + 6*x^5 + 6*x^6 +...
A(x)^2 = 1 + 6*x + 15*x^2 + 30*x^3 + 51*x^4 + 66*x^5 +...
A(x)^2 (mod 4) = 1 + 2*x + 3*x^2 + 2*x^3 + 3*x^4 + 2*x^5 +...
G(x) = 1 + 6*x + 3*x^2 + 2*x^3 + 3*x^4 + 6*x^5 +...
where G(x) is the g.f. of A083946.
PROG
(PARI) {a(n)=local(d=2, m=6, A=1+m*x); for(j=2, d*n, for(k=1, m, t=polcoeff((A+k*x^j+x*O(x^j))^(1/m), j); if(denominator(t)==1, A=A+k*x^j; break))); polcoeff(A, d*n)}
CROSSREFS
Sequence in context: A336422 A040007 A351024 * A324467 A151787 A113397
KEYWORD
nonn
AUTHOR
STATUS
approved