login
A110633
Every third term of A083946 where the self-convolution third power is congruent modulo 9 to A083946, which consists entirely of numbers 1 through 6.
3
1, 2, 6, 4, 6, 4, 3, 2, 6, 4, 2, 6, 6, 4, 4, 2, 4, 2, 6, 4, 3, 4, 2, 6, 1, 4, 2, 2, 3, 4, 1, 6, 6, 2, 6, 6, 1, 6, 2, 6, 6, 2, 4, 6, 2, 4, 4, 4, 2, 6, 6, 2, 2, 6, 4, 4, 2, 6, 6, 4, 5, 4, 2, 6, 2, 4, 1, 2, 5, 2, 3, 4, 6, 6, 6, 6, 2, 4, 5, 2, 3, 2, 1, 2, 4, 2, 5, 2, 4, 2, 6, 2, 2, 4, 4, 4, 3, 2, 1, 2, 6, 6, 2, 6, 3
OFFSET
0,2
EXAMPLE
A(x) = 1 + 2*x + 6*x^2 + 4*x^3 + 6*x^4 + 4*x^5 + 3*x^6 + ...
A(x)^3 = 1 + 6*x + 30*x^2 + 92*x^3 + 246*x^4 + 492*x^5 + ...
A(x)^3 (mod 9) = 1 + 6*x + 3*x^2 + 2*x^3 + 3*x^4 + 6*x^5 + ...
G(x) = 1 + 6*x + 3*x^2 + 2*x^3 + 3*x^4 + 6*x^5 + ...
where G(x) is the g.f. of A083946.
PROG
(PARI) {a(n)=local(d=3, m=6, A=1+m*x); for(j=2, d*n, for(k=1, m, t=polcoeff((A+k*x^j+x*O(x^j))^(1/m), j); if(denominator(t)==1, A=A+k*x^j; break))); polcoeff(A, d*n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved