OFFSET
1,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..750
FORMULA
a(n) = Sum_{k=1..floor((n+1)/2)} Sum_{j=1..min(n-2k+2, k)} ceiling(j^(n-2k+2)/(n-2k+2)^j)*ceiling(j^k/k^j).
MATHEMATICA
A110539[n_] := Sum[Sum[ Ceiling[j^(n - 2*k + 2)/(n - 2*k + 2)^j] *Ceiling[j^k/k^j], {j, 1, Min[n - k + 1, k]}], {k, 1, Floor[n/2]}];
Table[A110539[n], {n, 1, 50}] (* G. C. Greubel, Aug 31 2017 *)
PROG
(PARI) a(n)=sum(k=1, floor((n+1)/2), sum(j=1, min(n-2*k+2, k), ceil(j^(n-2*k+2)/(n-2*k+2)^j)*ceil(j^k/k^j))) \\ G. C. Greubel, Aug 31 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jul 25 2005
STATUS
approved