OFFSET
1,2
COMMENTS
Sums of antidiagonals of A110537 when this is viewed as a number square.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..710
FORMULA
a(n) = Sum_{k=1..n} Sum_{j=1..min(n-k+1,k)} ceiling(j^(n-k+1)/(n-k+1)^j)*ceiling(j^k/k^j).
MATHEMATICA
T[n_] := Sum[Sum[ Ceiling[j^(n - k + 1)/(n - k + 1)^j]*Ceiling[j^k/k^j], {j, 1, Min[n - k + 1, k]}], {k, 1, n}]; Table[T[n], {n, 1, 50}] (* G. C. Greubel, Aug 31 2017 *)
PROG
(PARI) for(n=1, 25, print1(sum(k=1, n, sum(j=1, min(n-k+1, k), ceil(j^(n-k+1)/(n-k+1)^j)*ceil(j^k/k^j))), ", ")) \\ G. C. Greubel, Aug 31 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jul 25 2005
STATUS
approved