login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110530 Recurrence: a(n) = Sum_{k=0..n-1} C(2*n-2,n-k-1)*a(k) with a(0)=1. 2
1, 1, 3, 13, 66, 380, 2447, 17424, 135740, 1146202, 10409616, 101031397, 1042361261, 11380543227, 130980176993, 1583726089859, 20058575880505, 265416510500487, 3660581511822798, 52511905732091815, 782044494316086134 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..500

EXAMPLE

a(1) = 1*1 =1,

a(2) = 2*1 + 1*1 = 3,

a(3) = 6*1 + 4*1 + 1*3 = 13,

a(4) = 20*1 + 15*1 + 6*3 + 1*13 = 66,

a(5) = 70*1 + 56*1 + 28*3 + 8*13 + 1*66 = 380.

This sequence can be generated by the addition table:

(1)_1__1___1___1 ...

_1__2_(3)__4___5___6 ...

_3__4__6___9_(13)_18__24 ...

13_16_20__26__35__48_(66)_90 ...

66_79_95_115_141_176_224_290_(380) ...

MATHEMATICA

nmax = 30; aa = ConstantArray[0, nmax+1]; aa[[1]] = 1; Do[aa[[n+1]]=Sum[Binomial[2*n-2, n-k-1]*aa[[k+1]], {k, 0, n-1}], {n, 1, nmax}]; aa (* Vaclav Kotesovec, May 06 2015 , much faster than PARI *)

PROG

(PARI) a(n)=if(n==0, 1, sum(k=0, n-1, binomial(2*n-2, n-k-1)*a(k)))

CROSSREFS

Cf. A110531.

Sequence in context: A112807 A219537 A045743 * A142979 A302303 A201713

Adjacent sequences:  A110527 A110528 A110529 * A110531 A110532 A110533

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jul 25 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 26 10:12 EDT 2019. Contains 324375 sequences. (Running on oeis4.)