This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A110516 Expansion of (1-x+x^2+x^3)/(1+x-x^4-x^5). 2
 1, -2, 3, -2, 3, -4, 5, -4, 5, -6, 7, -6, 7, -8, 9, -8, 9, -10, 11, -10, 11, -12, 13, -12, 13, -14, 15, -14, 15, -16, 17, -16, 17, -18, 19, -18, 19, -20, 21, -20, 21, -22, 23, -22, 23, -24, 25, -24, 25, -26, 27, -26, 27, -28, 29, -28, 29, -30, 31, -30, 31, -32, 33, -32, 33, -34, 35, -34, 35, -36, 37, -36, 37, -38, 39, -38, 39 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Transform of (-1)^n by number triangle A110515. Partial sums are A110514. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (-1,0,0,1,1) FORMULA G.f.: (1-x+x^2+x^3)/((1+x)(1-x^4)). a(n) = -a(n-1) + a(n-4) + a(n-5). a(n) = -sin(pi*n/2+pi/4)/sqrt(2) + cos(pi*n+pi/4)/sqrt(2) + (-1)^n*(2n+3)/4 + 1/4. MATHEMATICA CoefficientList[Series[(1-x+x^2+x^3)/(1+x-x^4-x^5), {x, 0, 80}], x] (* or *) LinearRecurrence[{-1, 0, 0, 1, 1}, {1, -2, 3, -2, 3}, 80] (* Harvey P. Dale, Jul 14 2017 *) PROG (PARI) x='x+O('x^50); Vec((1-x+x^2+x^3)/(1+x-x^4-x^5)) \\ G. C. Greubel, Aug 29 2017 CROSSREFS Sequence in context: A065362 A083219 A106249 * A187180 A256992 A261323 Adjacent sequences:  A110513 A110514 A110515 * A110517 A110518 A110519 KEYWORD easy,sign AUTHOR Paul Barry, Jul 24 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 15 16:53 EST 2019. Contains 320136 sequences. (Running on oeis4.)