login
a(1) = 1; a(m) = maximum denominator possible with a continued fraction [b(1);b(2),b(3),...,b(m-1)], where (b(1),b(2),b(3),...,b(m-1)) is a permutation of (a(1),a(2),a(3),...,a(m-1)).
1

%I #12 Nov 04 2018 01:39:10

%S 1,1,1,2,5,28,795,632167,399635138154,159708243647367169100509,

%T 25506723088926795724936617220833650734525459594,

%U 650592922735191299575059973922272937442761432150679274453311138653498403940208837571053997389

%N a(1) = 1; a(m) = maximum denominator possible with a continued fraction [b(1);b(2),b(3),...,b(m-1)], where (b(1),b(2),b(3),...,b(m-1)) is a permutation of (a(1),a(2),a(3),...,a(m-1)).

%C Apparently a(n) = A105787(n-1) for n >= 2. - _Georg Fischer_, Nov 02 2018

%t a[1] = 1; a[n_] := a[n] = Union[ Denominator /@ FromContinuedFraction /@ Permutations[ Table[ a[i], {i, n - 1}]]] [[ -1]]; Table[ a[n], {n, 11}]

%Y Cf. A110498.

%K nonn

%O 1,4

%A _Leroy Quet_ and _Robert G. Wilson v_, Jul 22 2005