

A110483


Continued fraction for seventh root of 2.


0



1, 9, 1, 1, 1, 1, 5, 46, 1, 3, 2, 1, 1, 3, 1, 1, 2, 1, 22, 48, 1, 1, 5, 4, 1, 1, 1, 1, 1, 1, 2, 8, 1, 6, 1, 21, 1, 1, 1, 1, 1, 6, 1, 1, 3, 3, 1, 1, 2, 2, 2, 3, 1, 26, 1, 16, 1, 4, 21, 1, 2, 1, 1, 1, 5, 3, 7, 21, 3, 1, 1, 1, 8, 1, 8, 1, 4, 1, 24, 1, 3, 1, 6, 1, 2, 1, 5, 5, 6, 1, 12, 1, 8, 2, 2, 1, 3, 1, 1, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


LINKS

Table of n, a(n) for n=0..99.


PROG

(Haskell) import Ratio
floorRoot :: Integer > Integer > Integer
floorRoot k n  k>=1 && n>=1 = h n where h x = let y=((k1)*x+n`div`x^(k1))`div`k in if y<x then h y else x
intFrac :: Rational > (Integer, Rational)
intFrac x = let ((a, b), ~(q, r)) = ((numerator x, denominator x), divMod a b) in (q, r%b)
cf :: Rational > Rational > [Integer]
cf x y = let ((xi, xf), (yi, yf)) = (intFrac x, intFrac y) in if xi==yi then xi : cf (recip xf) (recip yf) else []
y = 2^512  increase to get more terms, decrease to get a quick answer
(k, n) = (7, 2)  compute continued fraction for kth root of n
main = print (let x = floorRoot k (n*y^k) in cf (x%y) ((x+1)%y))


CROSSREFS

Cf. A002945 A002950.
Sequence in context: A176410 A087966 A087968 * A010164 A006084 A059928
Adjacent sequences: A110480 A110481 A110482 * A110484 A110485 A110486


KEYWORD

cofr,nonn


AUTHOR

Paul Stoeber (pstoeber(AT)unipotsdam.de), Sep 09 2005


STATUS

approved



