login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110483 Continued fraction for seventh root of 2. 0
1, 9, 1, 1, 1, 1, 5, 46, 1, 3, 2, 1, 1, 3, 1, 1, 2, 1, 22, 48, 1, 1, 5, 4, 1, 1, 1, 1, 1, 1, 2, 8, 1, 6, 1, 21, 1, 1, 1, 1, 1, 6, 1, 1, 3, 3, 1, 1, 2, 2, 2, 3, 1, 26, 1, 16, 1, 4, 21, 1, 2, 1, 1, 1, 5, 3, 7, 21, 3, 1, 1, 1, 8, 1, 8, 1, 4, 1, 24, 1, 3, 1, 6, 1, 2, 1, 5, 5, 6, 1, 12, 1, 8, 2, 2, 1, 3, 1, 1, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..99.

PROG

(Haskell) import Ratio

floorRoot :: Integer -> Integer -> Integer

floorRoot k n | k>=1 && n>=1 = h n where h x = let y=((k-1)*x+n`div`x^(k-1))`div`k in if y<x then h y else x

intFrac :: Rational -> (Integer, Rational)

intFrac x = let ((a, b), ~(q, r)) = ((numerator x, denominator x), divMod a b) in (q, r%b)

cf :: Rational -> Rational -> [Integer]

cf x y = let ((xi, xf), (yi, yf)) = (intFrac x, intFrac y) in if xi==yi then xi : cf (recip xf) (recip yf) else []

y = 2^512 -- increase to get more terms, decrease to get a quick answer

(k, n) = (7, 2) -- compute continued fraction for k-th root of n

main = print (let x = floorRoot k (n*y^k) in cf (x%y) ((x+1)%y))

CROSSREFS

Cf. A002945 A002950.

Sequence in context: A176410 A087966 A087968 * A010164 A006084 A059928

Adjacent sequences:  A110480 A110481 A110482 * A110484 A110485 A110486

KEYWORD

cofr,nonn

AUTHOR

Paul Stoeber (pstoeber(AT)uni-potsdam.de), Sep 09 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 17:29 EST 2016. Contains 278890 sequences.