This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A110439 Triangular array formed by the odd indexed Fibonacci numbers. 0
 1, 1, 1, 3, 2, 1, 8, 5, 3, 1, 21, 14, 8, 4, 1, 55, 38, 23, 12, 5, 1, 144, 102, 65, 36, 17, 6, 1, 377, 273, 180, 106, 54, 23, 7, 1, 987, 728, 494, 304, 166, 78, 30, 8, 1, 2584, 1936, 1346, 858, 494, 251, 109, 38, 9, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS The leftmost column of the array is the odd indexed Fibonacci numbers plus leading one. REFERENCES A. Nkwanta, A Riordan matrix approach to unifying a selected class of combinatorial arrays, Congressus Numerantium, 160 (2003), pp. 33-55. A. Nkwanta, A note on Riordan matrices, Contemporary Mathematics Series, AMS, 252 (1999), pp. 99-107. A. Nkwanta, Lattice paths, generating functions and the Riordan group, Ph.D. Thesis, Howard University, Washington DC 1997. LINKS Naiomi T. Cameron and Asamoah Nkwanta, On Some (Pseudo) Involutions in the Riordan Group, Journal of Integer Sequences, Vol. 8 (2005), Article 05.3.7. FORMULA Riordan array: ((1-2z+z^2)/(1-3z+z^2), ((1-z+z^2)-sqrt(1-2z-z^2-2z^3+z^4))/2z), R(n, k). Recurrence: R(n+1, 0) = 2R(n, 0)+ sum(R(n-j, 0))j>=1, leftmost column. For other columns: R(n+1, k) = R(n, k-1)+ R(n, k) + sum(R(n-j, k+j))j>=1. EXAMPLE Triangle starts: 1; 1,1; 3,2,1; 8,5,3,1; 21,14,8,4,1; CROSSREFS Cf. A097724. Sequence in context: A090452 A305538 A193924 * A065602 A237596 A292898 Adjacent sequences:  A110436 A110437 A110438 * A110440 A110441 A110442 KEYWORD easy,nonn,tabl AUTHOR Asamoah Nkwanta (nkwanta(AT)jewel.morgan.edu), Aug 09 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 14 15:12 EDT 2019. Contains 328019 sequences. (Running on oeis4.)