This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A110427 The r-th term of the n-th row of the following array contains the sum of r successively decreasing integers beginning from n. 0 4,5,0,-14 1 2 1 3 3 -3 4 5 0 -14 5 7 3 -10 -35 6 9 6 -6 -30 -69 ... Sequence contains the leading diagonal. 4
 1, 1, -3, -14, -35, -69, -119, -188, -279, -395, -539, -714, -923, -1169, -1455, -1784, -2159, -2583, -3059, -3590, -4179, -4829, -5543, -6324, -7175, -8099, -9099, -10178, -11339, -12585, -13919, -15344, -16863, -18479, -20195, -22014, -23939, -25973, -28119, -30380, -32759, -35259, -37883 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS FORMULA a(n)=n*(1+2n-n^2)/2=n-A002411(n-1). G.f.: x*(1-3*x-x^2)/(1-x)^4. a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). [From R. J. Mathar, Jul 10 2009] EXAMPLE The r-th term of the n-th row of the following array contains the sum of r successively decreasing integers beginning from n. 0 4,5,0,-14 1 2 1 3 3 -3 4 5 0 -14 5 7 3 -10 -35 6 9 6 -6 -30 -69 ... Sequence contains the leading diagonal. MAPLE a:=n->sum(j*n-1, j=0..n):seq(-a(n), n=0..42); - Zerinvary Lajos, Feb 06 2007 seq(-sum(n^2-2, k=0..n)/2, n=0..42); - Zerinvary Lajos, Jan 28 2008 PROG ;; PLT DrScheme (Zucker) (first (reverse (A110425 n)) ;; see A110425 for definition of that function. CROSSREFS Cf. A110425, A110426. Sequence in context: A081379 A081377 A050934 * A128916 A130287 A167858 Adjacent sequences:  A110424 A110425 A110426 * A110428 A110429 A110430 KEYWORD easy,sign AUTHOR Amarnath Murthy, Aug 01 2005 EXTENSIONS More terms from Joshua Zucker, May 10 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.