login
A110364
Beginning with 2, prime numbers such that the successive differences are distinct Fibonacci numbers.
1
2, 3, 5, 13, 47, 191, 46559, 8944394323838023, 8945942332593943, 407305795913026496164667897, 407305795913026497299571067, 407305795913026497299571677
OFFSET
1,1
COMMENTS
Comment from David Wasserman, Dec 01 2008: There is no room for the next term, which is
18828075583602596462866526311206253798143927071100760220356261227542635072700383.
MAPLE
with(combinat): F:={seq(fibonacci(k), k=1..500)}: a[1]:=2: for m from 2 to 7 do p:=proc(n) if member(ithprime(n)-a[m-1], F)=true then ithprime(n) else fi end: a[m]:=[seq(p(n), n=1..5000)][1]: F:=F minus {a[m]-a[m-1]}: od: seq(a[m], m=1..7); # Emeric Deutsch, Jul 28 2005
MATHEMATICA
s = 2; l = {2}; Print[s]; Do[m = 1; While[MemberQ[l, m] || !PrimeQ[s + Fibonacci[m]], m++ ]; AppendTo[l, m]; s += Fibonacci[m]; Print[s], {n, 100}] (* Ryan Propper, Jul 21 2006 *)
CROSSREFS
Cf. A110363.
Sequence in context: A048634 A012899 A215102 * A111288 A064526 A261192
KEYWORD
easy,nonn
AUTHOR
Amarnath Murthy, Jul 23 2005
EXTENSIONS
2 more terms from Emeric Deutsch, Jul 28 2005
More terms from Ryan Propper, Jul 21 2006
STATUS
approved