login
A triangle of coefficients based on A000931 and A000045: a(n) = a(n - 2) + a(n - 3); t(n,m) := a(n - m + 1)*a(m + 1)*Fibonacci[(n - m + 1)]*Fibonacci[(m + 1)].
0

%I #3 Oct 12 2012 14:54:49

%S 1,1,1,4,1,4,6,4,4,6,15,6,16,6,15,32,15,24,24,15,32,65,32,60,36,60,32,

%T 65,147,65,128,90,90,128,65,147,306,147,260,192,225,192,260,147,306,

%U 660,306,588,390,480,480,390,588,306,660,1424,660,1224,882,975,1024,975,882

%N A triangle of coefficients based on A000931 and A000045: a(n) = a(n - 2) + a(n - 3); t(n,m) := a(n - m + 1)*a(m + 1)*Fibonacci[(n - m + 1)]*Fibonacci[(m + 1)].

%C Row sums are:

%C {1, 2, 9, 20, 58, 142, 350, 860, 2035, 4848, 11354}.

%F a(n) = a(n - 2) + a(n - 3); t(n,m) := a(n - m + 1)*a(m + 1)*Fibonacci[(n - m + 1)]*Fibonacci[(m + 1)].

%e {1},

%e {1, 1},

%e {4, 1, 4},

%e {6, 4, 4, 6},

%e {15, 6, 16, 6, 15},

%e {32, 15, 24, 24, 15, 32},

%e {65, 32, 60, 36, 60, 32, 65},

%e {147, 65, 128, 90, 90, 128, 65, 147},

%e {306, 147, 260, 192, 225, 192, 260, 147, 306},

%e {660, 306, 588, 390, 480, 480, 390, 588, 306, 660},

%e {1424, 660, 1224, 882, 975, 1024, 975, 882, 1224, 660, 1424}

%t Clear[t, a, n, m] a[0] = 1; a[1] = 1; a[2] = 1; a[n_] := a[n] = a[n - 2] + a[n - 3]; t[n_, m_] := a[(n - m + 1)]*a[(m + 1)]*Fibonacci[(n - m + 1)]*Fibonacci[(m + 1)]; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%]

%Y Cf. A141611, A141617, A000931, A000045, A058071.

%K nonn,tabl

%O 1,4

%A _Roger L. Bagula_ and _Gary W. Adamson_, Aug 24 2008