login
Triangle read by rows: T(n,k) = n!*Pell(n-k+1)/k!, where Pell(n)=A000129(n).
5

%I #11 Dec 07 2013 12:58:09

%S 1,2,1,10,4,1,72,30,6,1,696,288,60,8,1,8400,3480,720,100,10,1,121680,

%T 50400,10440,1440,150,12,1,2056320,851760,176400,24360,2520,210,14,1,

%U 39715200,16450560,3407040,470400,48720,4032,280,16,1,862928640

%N Triangle read by rows: T(n,k) = n!*Pell(n-k+1)/k!, where Pell(n)=A000129(n).

%C The row polynomials form an Appell sequence (see Wikipedia). - _Tom Copeland_, Dec 03 2013.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Appell_sequence">Appell sequence</a>

%F Column k has e.g.f. x^k/(k!*(1-2x-x^2)).

%F E.g.f. Sum T(n,k) x^n y^k / n! = e^{xy}/(1-2x-x^2). - Franklin T. Adams-Watters, Jan 12 2007

%e Rows begin

%e 1;

%e 2,1;

%e 10,4,1;

%e 72,30,6,1;

%e 696,288,60,8,1;

%e 8400,3480,720,100,10,1;

%e 121680,50400,10440,1440,150,12,1;

%Y Cf. A000129, A110328 (row sums), A110329 (diagonal sums), A110330 (matrix inverse).

%K nonn,tabl,easy

%O 0,2

%A _Paul Barry_, Jul 20 2005

%E Edited by _Franklin T. Adams-Watters_, Jan 12 2007