This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A110267 Total number of black cells at the n first generations of a single black cell following Wolfram's Rule 30 cellular automaton. 5
 1, 4, 7, 13, 17, 26, 31, 43, 50, 62, 73, 87, 99, 118, 131, 153, 168, 187, 207, 231, 252, 275, 298, 326, 352, 379, 405, 438, 468, 502, 533, 572, 598, 637, 666, 712, 744, 788, 826, 871, 918, 959, 1004, 1053, 1091, 1146, 1188, 1239, 1283, 1336, 1379, 1438, 1490 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS At each generation, "looking back", one can see "behind", groups of black cells: total number of black cells (cumulative sum of n first terms of A070952). LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..10000 Eric Weisstein's World of Mathematics, Rule 30. EXAMPLE a(1)=1 because one black cell; a(2)=4 because there are now 3 contiguous black cell connected to the first one, which form one only black surface of 4 cells; a(3)=7 because appear three black cells: 4+3=7 From Michael De Vlieger, Dec 16 2015: (Start) First 12 rows, replacing "0" with "." for better visibility of ON cells, followed by the total number of ON cells per row, and the running total up to that row:                 1                  =  1 ->   1               1 1 1                =  3 ->   4             1 1 . . 1              =  3 ->   7           1 1 . 1 1 1 1            =  6 ->  13         1 1 . . 1 . . . 1          =  4 ->  17       1 1 . 1 1 1 1 . 1 1 1        =  9 ->  26     1 1 . . 1 . . . . 1 . . 1      =  5 ->  31   1 1 . 1 1 1 1 . . 1 1 1 1 1 1    = 12 ->  43 1 1 . . 1 . . . 1 1 1 . . . . . 1  =  7 ->  50 (End) MATHEMATICA Accumulate[Total /@ CellularAutomaton[30, {{1}, 0}, 52]] (* Michael De Vlieger, Dec 16 2015 *) PROG (Haskell) a110267 n = a110267_list !! (n-1) a110267_list = scanl1 (+) a070952_list -- Reinhard Zumkeller, Jun 08 2013 CROSSREFS Cf. A070950, A051023, A092539, A092540, A070952, A100053, A100054, A100055, A094603, A094604, A000225, A074890. See A265704 for an essentially identical sequence. Sequence in context: A310821 A310822 A265704 * A049698 A288823 A310823 Adjacent sequences:  A110264 A110265 A110266 * A110268 A110269 A110270 KEYWORD easy,nonn AUTHOR Alexandre Wajnberg, Sep 06 2005 EXTENSIONS Offset changed by Reinhard Zumkeller, Jun 08 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 20 11:28 EDT 2019. Contains 325180 sequences. (Running on oeis4.)