login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110257 Numerators in the coefficients that form the odd-indexed partial quotients of the continued fraction representation of the inverse tangent of 1/x. 7
1, 5, 81, 325, 20825, 83349, 1334025, 5337189, 1366504425, 5466528925, 87470372561, 349899121845, 22394407746529, 89580335298125, 1433319858545625, 5733391194015525, 5871086572691471625 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Limit a(n)/A110258(n) = limit A110255(2*n-1)/A110256(2*n-1) = 4/Pi.

LINKS

Paul D. Hanna, Table of n, a(n) for n = 1..200

FORMULA

a(n) = A110255(2*n-1).

a(n) = (4*n+1)*A002894(n)/4^A000120(n). - Peter Luschny, Mar 23 2014

EXAMPLE

arctan(1/x) = 1/x - 1/(3*x^3) + 1/(5*x^5) - 1/(7*x^7) +-...

= [0; x, 3*x, 5/4*x, 28/9*x, 81/64*x, 704/225*x, 325/256*x,

768/245*x, 20825/16384*x, 311296/99225*x, 83349/65536*x,

1507328/480249*x, 1334025/1048576*x, 3145728/1002001*x,...]

= 1/(x + 1/(3*x + 1/(5/4*x + 1/(28/9*x + 1/(81/64*x +...))))).

The coefficients of x in the even-indexed partial quotients converge to Pi:

{3, 28/9, 704/225, 768/245, 311296/99225, ...}.

The coefficients of x in the odd-indexed partial quotients converge to 4/Pi:

{1, 5/4, 81/64, 325/256, 20825/16384, ...}.

MAPLE

a := n -> (4*n+1)*binomial(2*n, n)^2/4^(add(i, i=convert(n, base, 2)));

seq(a(n), n=0..16);  # Peter Luschny, Mar 23 2014

PROG

(PARI) {a(n)=numerator(subst((contfrac( sum(k=0, 2*n+1, (-1)^k/x^(2*k+1)/(2*k+1)), 2*n+2))[2*n], x, 1))}

CROSSREFS

Cf. A110258 (denominators), A110255/A110256 (continued fraction), A110259/A110260.

Sequence in context: A189443 A275091 A275347 * A135918 A115032 A278883

Adjacent sequences:  A110254 A110255 A110256 * A110258 A110259 A110260

KEYWORD

frac,nonn

AUTHOR

Paul D. Hanna, Jul 18 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 5 15:24 EST 2016. Contains 278770 sequences.