This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A110255 Numerators in the fractional coefficients that form the partial quotients of the continued fraction representation of the inverse tangent of 1/x. 7
 1, 3, 5, 28, 81, 704, 325, 768, 20825, 311296, 83349, 1507328, 1334025, 3145728, 5337189, 130023424, 1366504425, 7516192768, 5466528925, 12884901888, 87470372561, 2954937499648, 349899121845, 12919261626368, 22394407746529 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Limit a(2*n-1)/A110256(2*n-1) = limit A110257(n)/A110258(n) = 4/Pi. Limit a(2*n)/A110256(2*n) = limit A110259(n)/A110260(n) = Pi. LINKS Paul D. Hanna, Table of n, a(n) for n = 1..400 EXAMPLE arctan(1/x) = 1/x - 1/(3*x^3) + 1/(5*x^5) - 1/(7*x^7) +-... = [0; x, 3*x, 5/4*x, 28/9*x, 81/64*x, 704/225*x, 325/256*x, 768/245*x, 20825/16384*x, 311296/99225*x, 83349/65536*x, 1507328/480249*x, 1334025/1048576*x, 3145728/1002001*x,...] = 1/(x + 1/(3*x + 1/(5/4*x + 1/(28/9*x + 1/(81/64*x +...))))). The coefficients of x in the even-indexed partial quotients converge to Pi: {3, 28/9, 704/225, 768/245, 311296/99225, ...}. The coefficients of x in the odd-indexed partial quotients converge to 4/Pi: {1, 5/4, 81/64, 325/256, 20825/16384, ...}. PROG (PARI) {a(n)=numerator(subst((contfrac( sum(k=0, n, (-1)^k/x^(2*k+1)/(2*k+1)), n+1))[n+1], x, 1))} CROSSREFS Cf. A110256 (denominators), A110257/A110258 (odd-indexed), A110259/A110260 (even-indexed). Sequence in context: A163783 A103526 A054388 * A290330 A300676 A016552 Adjacent sequences:  A110252 A110253 A110254 * A110256 A110257 A110258 KEYWORD cofr,frac,nonn AUTHOR Paul D. Hanna, Jul 18 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 19 18:51 EDT 2019. Contains 326133 sequences. (Running on oeis4.)