login
A110219
Cone C(n,m,k) read by planes and rows, for 1 <= k <= m <= n: Total Number of coverings of a k X m X n board using A110217(n,m,k) knights.
3
1, 1, 1, 1, 1, 4, 36, 8, 12, 12, 1, 16, 1296, 15, 56, 14, 9, 16, 8, 156, 1, 4, 2916, 6, 24, 8, 3, 4, 2, 6, 47, 2, 8, 38, 888, 1, 1, 6561, 2, 236, 2, 1, 268, 1, 2988, 46, 4, 27, 7
OFFSET
1,6
EXAMPLE
Cone starts:
1.1...1........1..............1.................1......................
..1,1.4,36....16,1296.........4,2916............1,6561.
......8,12,12.15,..56,14......6,..24,8..........2,.236,.2
...............9,..16,.8,156..3,...4,2,.6.......1,.268,.1,2988
.............................47,...2,8,38,888..46,...4,27,...7,.?
..............................................127,..32,12,...?,....
CROSSREFS
C(n, n, 1) = A103315(n), C(n, n, n) = A110216(n). A110218 gives number of inequivalent solutions.
Sequence in context: A053426 A172282 A120083 * A174413 A162990 A366729
KEYWORD
hard,nonn,tabf
AUTHOR
Nikolaus Meyberg (Nikolaus.Meyberg(AT)t-online.de), Jul 17 2005
STATUS
approved