login
A110193
Number of (indecomposable or decomposable) binary self-dual codes (singly- or doubly-even) of length 2n and minimal distance exactly 6.
0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 3, 13, 74, 938
OFFSET
1,14
COMMENTS
In fact all such codes of length <= 42 are indecomposable.
REFERENCES
R. T. Bilous, Enumeration of binary self-dual codes of length 34, Preprint, 2005.
R. T. Bilous and G. H. J. van Rees, An enumeration of binary self-dual codes of length 32, Designs, Codes Crypt., 26 (2002), 61-86.
J. H. Conway and V. S. Pless, On the enumeration of self-dual codes, J. Comb. Theory, A28 (1980), 26-53.
V. S. Pless, The children of the (32,16) doubly even codes, IEEE Trans. Inform. Theory, 24 (1978), 738-746.
LINKS
G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
J. H. Conway, V. Pless and N. J. A. Sloane, The Binary Self-Dual Codes of Length Up to 32: A Revised Enumeration, J. Comb. Theory, A28 (1980), 26-53 (Abstract, pdf, ps, Table A, Table D).
E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (Abstract, pdf, ps).
CROSSREFS
Sequence in context: A343787 A333890 A009382 * A038762 A276894 A074517
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 06 2005
STATUS
approved