

A110193


Number of (indecomposable or decomposable) binary selfdual codes (singly or doublyeven) of length 2n and minimal distance exactly 6.


0



0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 3, 13, 74, 938
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,14


COMMENTS

In fact all such codes of length <= 42 are indecomposable.


REFERENCES

R. T. Bilous, Enumeration of binary selfdual codes of length 34, Preprint, 2005.
R. T. Bilous and G. H. J. van Rees, An enumeration of binary selfdual codes of length 32, Designs, Codes Crypt., 26 (2002), 6186.
J. H. Conway and V. S. Pless, On the enumeration of selfdual codes, J. Comb. Theory, A28 (1980), 2653.
V. S. Pless, The children of the (32,16) doubly even codes, IEEE Trans. Inform. Theory, 24 (1978), 738746.


LINKS

Table of n, a(n) for n=1..17.
G. Nebe, E. M. Rains and N. J. A. Sloane, SelfDual Codes and Invariant Theory, Springer, Berlin, 2006.
J. H. Conway, V. Pless and N. J. A. Sloane, The Binary SelfDual Codes of Length Up to 32: A Revised Enumeration, J. Comb. Theory, A28 (1980), 2653 (Abstract, pdf, ps, Table A, Table D).
E. M. Rains and N. J. A. Sloane, Selfdual codes, pp. 177294 of Handbook of Coding Theory, Elsevier, 1998 (Abstract, pdf, ps).


CROSSREFS

Cf. A003179, A106167.
Sequence in context: A189886 A333890 A009382 * A038762 A276894 A074517
Adjacent sequences: A110190 A110191 A110192 * A110194 A110195 A110196


KEYWORD

nonn


AUTHOR

N. J. A. Sloane, Sep 06 2005


STATUS

approved



