The OEIS is supported by the many generous donors to the OEIS Foundation.


(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110193 Number of (indecomposable or decomposable) binary self-dual codes (singly- or doubly-even) of length 2n and minimal distance exactly 6. 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 3, 13, 74, 938 (list; graph; refs; listen; history; text; internal format)



In fact all such codes of length <= 42 are indecomposable.


R. T. Bilous, Enumeration of binary self-dual codes of length 34, Preprint, 2005.

R. T. Bilous and G. H. J. van Rees, An enumeration of binary self-dual codes of length 32, Designs, Codes Crypt., 26 (2002), 61-86.

J. H. Conway and V. S. Pless, On the enumeration of self-dual codes, J. Comb. Theory, A28 (1980), 26-53.

V. S. Pless, The children of the (32,16) doubly even codes, IEEE Trans. Inform. Theory, 24 (1978), 738-746.


Table of n, a(n) for n=1..17.

G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.

J. H. Conway, V. Pless and N. J. A. Sloane, The Binary Self-Dual Codes of Length Up to 32: A Revised Enumeration, J. Comb. Theory, A28 (1980), 26-53 (Abstract, pdf, ps, Table A, Table D).

E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (Abstract, pdf, ps).


Cf. A003179, A106167.

Sequence in context: A343787 A333890 A009382 * A038762 A276894 A074517

Adjacent sequences:  A110190 A110191 A110192 * A110194 A110195 A110196




N. J. A. Sloane, Sep 06 2005



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 30 21:21 EDT 2022. Contains 357106 sequences. (Running on oeis4.)