login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110191 Decimal expansion of 1/6 - 1/(2*Pi). 0
0, 0, 7, 5, 1, 1, 7, 2, 3, 5, 7, 4, 7, 7, 1, 3, 3, 0, 8, 9, 7, 7, 8, 2, 9, 0, 3, 2, 9, 4, 1, 5, 2, 3, 0, 4, 6, 3, 2, 2, 0, 7, 0, 2, 0, 9, 2, 6, 2, 1, 0, 2, 1, 7, 9, 1, 8, 9, 9, 9, 3, 2, 2, 6, 0, 7, 7, 6, 9, 8, 6, 9, 0, 3, 2, 4, 4, 0, 1, 3, 1, 5, 7, 6, 5, 5, 2, 8, 6, 3, 9, 0, 0, 4, 1, 3, 5, 8, 0, 7, 1, 0 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,3

REFERENCES

Bruce C. Berndt and K. Venkatachaliengar,On the transformation formula for the Dedekind eta-function, Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics, F. G. Garvan and M. E. H. Ismail, eds., Kluwer, Dordrecht, 2001, pp. 73-77

LINKS

Table of n, a(n) for n=0..101.

Bruce C. Berndt and K. Venkatachaliengar, On the transformation formula for the Dedekind eta-function

Mark W. Coffey, Bernoulli identities, zeta relations, determinant expressions, Mellin transforms, and representation of the Hurwitz numbers, arXiv:1601.01673 [math.NT], 2016. See Lemma 2 p. 33.

Eric Weisstein's World of Mathematics, Hyperbolic Cosecant

FORMULA

Equals Sum_{n >= 1} 1/sin(n*Pi*i)^2. - Michel Marcus, Jan 11 2016

EXAMPLE

0.007511723574771330897...

PROG

(PARI)  1/(2*Pi) - 1/6 \\ Michel Marcus, Jan 11 2016

(PARI) suminf(n=1, 1/sin(n*Pi*I)^2) \\ Michel Marcus, Jan 11 2016

CROSSREFS

Cf. A086201.

Sequence in context: A145176 A093205 A156536 * A233090 A254177 A021575

Adjacent sequences:  A110188 A110189 A110190 * A110192 A110193 A110194

KEYWORD

nonn,cons

AUTHOR

Eric W. Weisstein, Jul 15 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 23 13:28 EDT 2017. Contains 288665 sequences.