login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110112 Square array of numbers associated to the recurrences b(k) = b(k-1) + n*b(k-2); array T(n,k), read by descending antidiagonals, for n, k >= 0. 2
1, 1, 1, 1, 3, 1, 1, 15, 5, 1, 1, 60, 55, 7, 1, 1, 260, 385, 133, 9, 1, 1, 1092, 3311, 1330, 261, 11, 1, 1, 4641, 25585, 18430, 3393, 451, 13, 1, 1, 19635, 208335, 210490, 68237, 7216, 715, 15, 1, 1, 83215, 1652145, 2673223, 1037673, 197456, 13585, 1065, 17, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Rows include A001655, (-1)^n*A015266(n+3), A110111.

LINKS

Table of n, a(n) for n=0..55.

FORMULA

T(n, k) = a(n, k+1) * a(n, k+2) * a(n, k+3)/(n+1), where a(n, k) is the solution to a(n, k) = a(n, k-1) + n*a(n, k-2) for k >= 2 with a(n, 0) = 0 and a(n, 1) = 1 for all n >= 0.

Row n has g.f. 1/((1 + n*x - n^3*x^2) * (1 - (3*n + 1)*x - n^3*x^2)).

EXAMPLE

Array T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:

  1,  1,   1,    1,      1,       1,        1,          1, ...

  1,  3,  15,   60,    260,    1092,     4641,      19635, ...

  1,  5,  55,  385,   3311,   25585,   208335,    1652145, ...

  1,  7, 133, 1330,  18430,  210490,  2673223,   31940881, ...

  1,  9, 261, 3393,  68237, 1037673, 18598293,  300963537, ...

  1, 11, 451, 7216, 197456, 3761296, 89565861, 1842200151, ...

  ...

MAPLE

a := proc(n, k) local v; option remember; if k = 0 and 0 <= n then v := 0; end if; if k = 1 and 0 <= n then v := 1; end if; if 2 <= k and 0 <= n then v := a(n, k - 1) + n*a(n, k - 2); end if; v; end proc;

T := proc(n, k) a(n, k + 1)*a(n, k + 2)*a(n, k + 3)/(n + 1); end proc;

seq(seq(T(k, n-k), k=0..n), n=0..10); # Petros Hadjicostas, Dec 26 2019

CROSSREFS

Cf. A083856.

Sequence in context: A072285 A144269 A144270 * A326800 A176225 A173917

Adjacent sequences:  A110109 A110110 A110111 * A110113 A110114 A110115

KEYWORD

easy,nonn,tabl

AUTHOR

Paul Barry, Jul 12 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 21 12:57 EDT 2020. Contains 337272 sequences. (Running on oeis4.)