login
Numbers n with even length such that sigma(n)=d_1^d_2*d_3^d_4 *...*d_(k-1)^d_k where d_1 d_2 ... d_k is the decimal expansion of n.
5

%I #7 Oct 16 2012 09:03:07

%S 146710,334552,12931485,15734393,16839254,20499191,28661422,38722820,

%T 43681330,44463034,45509442,55188392,55938216,92505149,1054662422,

%U 1060804965,1068721252,1094834272,1167528360,1341465139,1436725284,1452198772,1452847236,1540709585,1594291529,1596602643,1672853710

%N Numbers n with even length such that sigma(n)=d_1^d_2*d_3^d_4 *...*d_(k-1)^d_k where d_1 d_2 ... d_k is the decimal expansion of n.

%H Max Alekseyev, <a href="/A110084/b110084.txt">Table of n, a(n) for n = 1..99</a>

%e 45509442 is in the sequence because sigma(55938216)=5^5*9^3*8^2*1^6.

%t Do[h = IntegerDigits[n]; k = Length[h]; If[EvenQ[k] && Select[ Range[k/2], h[[2#-1]] == 0 &] == {} && DivisorSigma[1, n]== Product[h[[2j-1]]^h[[2j]], {j, k/2}], Print[n]], {n, 10^8}]

%Y Cf. A112009, A112010, A112011.

%K base,nonn

%O 1,1

%A _Farideh Firoozbakht_, Aug 26 2005

%E Terms a(14) onward from _Max Alekseyev_, Oct 16 2012