login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110051 Expansion of (1-x+2*x^3+x^2)/((1-x)*(2*x+1)*(2*x-1)*(4*x^2+4*x-1)). 2
1, 4, 25, 119, 599, 2887, 14039, 67767, 327607, 1581751, 7638967, 36883895, 178097591, 859930039, 4152135095, 20048276919, 96801746359, 467400158647, 2256808013239, 10896832949687, 52614565424567, 254045594545591 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..21.

Index entries for linear recurrences with constant coefficients, signature (5, 4, -24, 0, 16).

FORMULA

a(0)=1, a(1)=4, a(2)=25, a(3)=119, a(4)=599, a(n)=5*a(n-1)+4*a(n-2)- 24*a(n-3)+ 16*a(n-5). - Harvey P. Dale, Sep 07 2012

a(n)=1/112*(-2*(7*(-2)^n+7*2^(n+1)-8)+(13-9*Sqrt[2])*(2-2*Sqrt[2])^n+ 9* 2^(n+1/2)*(1+Sqrt[2])^n+13*(2*(1+Sqrt[2]))^n). - Harvey P. Dale, Sep 07 2012

MAPLE

seriestolist(series((1-x+2*x^3+x^2)/((1-x)*(2*x+1)*(2*x-1)*(4*x^2+4*x-1)), x=0, 25)); -or- Floretion Algebra Multiplication Program, FAMP Code: -basejrokseq[A*B] with A = + 'i - .5'j + .5'k - .5j' + .5k' - 'ii' - .5'ij' - .5'ik' - .5'ji' - .5'ki' and B = - .5'i + .5'j + 'k - .5i' + .5j' - 'kk' - .5'ik' - .5'jk' - .5'ki' - .5'kj'; RokType: Y[15] = Y[15] + 1/2

MATHEMATICA

CoefficientList[Series[(1-x+2x^3+x^2)/((1-x)(2x+1) (2x-1) (4x^2+4x-1)), {x, 0, 30}], x] (* or *) LinearRecurrence[{5, 4, -24, 0, 16}, {1, 4, 25, 119, 599}, 30] (* Harvey P. Dale, Sep 07 2012 *)

CROSSREFS

Cf. A110050, A110052.

Sequence in context: A225692 A070764 A244746 * A273023 A013187 A069639

Adjacent sequences:  A110048 A110049 A110050 * A110052 A110053 A110054

KEYWORD

easy,nonn

AUTHOR

Creighton Dement, Jul 10 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 19 07:02 EST 2017. Contains 294915 sequences.