%I #7 May 11 2019 10:14:22
%S 2,19,73,369,1697,8241,39441,190609,918929,4437649,21421201,103433361,
%T 499397777,2411316369,11642774673,56216331409,271436096657,
%U 1310609581201,6328181400721,30555163403409,147533373973649
%N Expansion of (2+9*x-24*x^3+16*x^4-30*x^2) / ((1-x)*(2*x+1)*(2*x-1)*(4*x^2+4*x-1)).
%H Colin Barker, <a href="/A110050/b110050.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,4,-24,0,16).
%F a(n) = 5*a(n-1) + 4*a(n-2) - 24*a(n-3) + 16*a(n-5) for n>4. - _Colin Barker_, May 11 2019
%p seriestolist(series((2+9*x-24*x^3+16*x^4-30*x^2)/((1-x)*(2*x+1)*(2*x-1)*(4*x^2+4*x-1)), x=0,25)); -or- Floretion Algebra Multiplication Program, FAMP Code: -kbasejrokseq[A*B] with A = + 'i - .5'j + .5'k - .5j' + .5k' - 'ii' - .5'ij' - .5'ik' - .5'ji' - .5'ki' and B = - .5'i + .5'j + 'k - .5i' + .5j' - 'kk' - .5'ik' - .5'jk' - .5'ki' - .5'kj'; RokType: Y[15] = Y[15] + 1/2
%o (PARI) Vec((2 + 9*x - 30*x^2 - 24*x^3 + 16*x^4) / ((1 - x)*(1 - 2*x)*(1 + 2*x)*(1 - 4*x - 4*x^2)) + O(x^25)) \\ _Colin Barker_, May 11 2019
%Y Cf. A110051, A110048.
%K easy,nonn
%O 0,1
%A _Creighton Dement_, Jul 10 2005