login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110048 Expansion of 1/((1+2*x)*(1-4*x-4*x^2)). 6
1, 2, 16, 64, 336, 1568, 7680, 36864, 178432, 860672, 4157440, 20070400, 96915456, 467935232, 2259419136, 10909384704, 52675280896, 254338531328, 1228055511040, 5929575645184, 28630525673472, 138240403177472 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

See also comment for A110047.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Robert Munafo, Sequences Related to Floretions

Index entries for linear recurrences with constant coefficients, signature (2,12,8).

FORMULA

Superseeker finds: a(n+1) = 2*A086348(n+1) (A086348's offset is 1: On a 3 X 3 board, number of n-move routes of chess king ending at central cell); binomial transform matches A084159 (Pell oblongs); j-th coefficient of g.f.*(1+x)^j matches A079291 (Squares of Pell numbers); a(n) + a(n+1) = A086346(n+2) (A086346's offset is 1: On a 3 X 3 board, the number of n-move paths for a chess king ending in a given corner cell.)

From Maksym Voznyy (voznyy(AT)mail.ru), Jul 24 2008: (Start)

a(n) = 2*a(n-1) + 12*a(n-2) + 8*a(n-3), where a(1)=1, a(2)=2, a(3)=16.

a(n) = 2^(n-3)*( 4*(-1)^(1-n) + (sqrt(2)-1)^(-n) + (-sqrt(2)-1)^(-n)) . (End)

a(n) = 2^n*A097076(n+1). - R. J. Mathar, Mar 08 2021

MAPLE

seriestolist(series(1/((1+2*x)*(1-4*x-4*x^2)), x=0, 40));

MATHEMATICA

CoefficientList[Series[1/((1+2x)(1-4x-4x^2)), {x, 0, 40}], x] (* or *) LinearRecurrence[{2, 12, 8}, {1, 2, 16}, 41] (* Harvey P. Dale, Nov 02 2011 *)

PROG

Floretion Algebra Multiplication Program, FAMP Code:

-kbasejseq[A*B] with A = + 'i - .5'j + .5'k - .5j' + .5k' - 'ii' - .5'ij' - .5'ik' - .5'ji' - .5'ki' and B = - .5'i + .5'j + 'k - .5i' + .5j' - 'kk' - .5'ik' - .5'jk' - .5'ki' - .5'kj'

(Magma) [2^(n-2)*(Evaluate(DicksonFirst(n+1, -1), 2) +2*(-1)^n): n in [0..40]]; // G. C. Greubel, Aug 18 2022

(SageMath) [2^(n-2)*(lucas_number2(n+1, 2, -1) +2*(-1)^n) for n in (0..40)] # G. C. Greubel, Aug 18 2022

CROSSREFS

Cf. A079291, A084159, A086346, A086348, A110046, A110047, A110049, A110050.

Sequence in context: A127276 A076616 A222381 * A094505 A035598 A167566

Adjacent sequences: A110045 A110046 A110047 * A110049 A110050 A110051

KEYWORD

easy,nonn

AUTHOR

Creighton Dement, Jul 10 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 05:20 EST 2022. Contains 358485 sequences. (Running on oeis4.)