

A109981


Primes such that both the sum of digits and the number of digits are primes.


3



11, 23, 29, 41, 43, 47, 61, 67, 83, 89, 101, 113, 131, 137, 139, 151, 157, 173, 179, 191, 193, 197, 199, 223, 227, 229, 241, 263, 269, 281, 283, 311, 313, 317, 331, 337, 353, 359, 373, 379, 397, 401, 409, 421, 443, 449, 461, 463, 467, 487, 557, 571, 577, 593
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Cf. A046704 Additive primes: sum of digits is a prime, A088136 Primes such that sum of first and last digits is prime.


LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
G. Harman, Counting Primes whose Sum of Digits is Prime, J. Integer Seq., 15 (2012), Article 12.2.2.


EXAMPLE

a(86) = 10037 because both the sum (=11) and number (=5) of digits are primes.


MATHEMATICA

Select[Prime[Range[200]], PrimeQ[Length[IntegerDigits[ # ]]]&&PrimeQ[Plus@@IntegerDigits[ # ]]&]


PROG

(Haskell)
a109981 n = a109981_list !! (n1)
a109981_list = filter ((== 1) . a010051' . a055642) a046704_list
 Reinhard Zumkeller, Nov 16 2012


CROSSREFS

Cf. A046704, A088136.
Cf. A010051, A055642.
Sequence in context: A138537 A136000 A054723 * A091367 A088136 A164932
Adjacent sequences: A109978 A109979 A109980 * A109982 A109983 A109984


KEYWORD

base,nonn


AUTHOR

Zak Seidov, Jul 06 2005


STATUS

approved



