login
A109931
Least palindromic multiple of concatenation n,n-1,...,3,2,1,2,3,...,n-1,n, or zero if no such multiple exists. a(n) is not equal to n.
1
2, 424, 64246, 8642468, 5975335795, 65497555579456, 765439777777934567, 8765432999999992345678, 76606769668830703886696760667, 0
OFFSET
1,1
COMMENTS
The multipliers are: 2, 2, 2, 2, 11, 1001, 100001, 10000001, ...
Such a multiple may fail to exist for n >= 10 because the concatenation n,n-1,...,3,2,1,2,3,...,n-1,n is no longer a palindrome itself in that case (e.g., for n=10 the concatenation is 109876543212345678910). - Nathaniel Johnston, Jun 26 2011
a(11) >= 10^40. - Max Alekseyev, Feb 16 2024
EXAMPLE
a(5) = 5975335795 = 11*543212345.
MAPLE
read(transforms): A109931 := proc(n) local k, m, v: m:=parse(cat(digrev(parse(cat($(1..n)))), cat($(2..n)))): for k from 2 do v:=k*m: if(v=digrev(v))then return v: fi: od: end: seq(A109931(n), n=2..6); # only valid for n <= 9, Nathaniel Johnston, Jun 26 2011
CROSSREFS
Sequence in context: A119120 A373552 A332142 * A352498 A326364 A200951
KEYWORD
base,more,nonn
AUTHOR
Amarnath Murthy, Jul 18 2005
EXTENSIONS
a(6)-a(8) from Lars Blomberg, Jun 26 2011
a(9)-a(10) from Donovan Johnson, Oct 13 2011
STATUS
approved