login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A109925 Number of primes of the form n - 2^k. 13
0, 0, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 0, 1, 2, 3, 1, 4, 0, 2, 1, 2, 0, 3, 0, 1, 1, 2, 1, 3, 1, 3, 0, 2, 1, 4, 0, 1, 1, 2, 1, 5, 0, 2, 1, 3, 0, 3, 0, 1, 1, 3, 0, 2, 0, 1, 1, 3, 1, 4, 0, 1, 1, 2, 1, 5, 0, 2, 1, 2, 1, 6, 0, 3, 0, 2, 1, 3, 0, 3, 1, 2, 0, 4, 0, 1, 1, 3, 0, 3, 0, 2, 0, 1, 1, 3, 0, 2, 1, 2, 1, 6 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Erdos conjectures that the numbers in A039669 are the only n for which n-2^r is prime for all 2^r<n. - T. D. Noe and Robert G. Wilson v, Jul 19 2005

a(A006285(n)) = 0. - Reinhard Zumkeller, May 27 2015

LINKS

T. D. Noe, Table of n, a(n) for n = 1..10000

FORMULA

a(A118954(n))=0, a(A118955(n))>0; A118952(n)<=a(n); A078687(n)=a(A000040(n)). - Reinhard Zumkeller, May 07 2006

EXAMPLE

a(21) = 4, 21-2 =19, 21-4 = 17, 21-8 = 13, 21-16 = 5, four primes.

127 is the smallest odd number > 1 such that a(n) = 0: A006285(2) = 127. - Reinhard Zumkeller, May 27 2015

MATHEMATICA

Table[cnt=0; r=1; While[r<n, If[PrimeQ[n-r], cnt++ ]; r=2r]; cnt, {n, 150}] (Noe)

f[n_] := Count[ PrimeQ[n - 2^Range[0, Floor[ Log[2, n]]]], True]; Table[ f[n], {n, 105}] (* Robert G. Wilson v, Jul 21 2005 *)

PROG

(MAGMA) a109925:=function(n); count:=0; e:=1; while e le n do if IsPrime(n-e) then count+:=1; end if; e*:=2; end while; return count; end function; [ a109925(n): n in [1..105] ]; // Klaus Brockhaus, Oct 30 2010

(PARI) a(n)=sum(k=0, log(n)\log(2), isprime(n-2^k)) \\ Charles R Greathouse IV, Feb 19 2013

(Haskell)

a109925 n = sum $ map (a010051' . (n -)) $ takeWhile (< n)  a000079_list

-- Reinhard Zumkeller, May 27 2015

CROSSREFS

Cf. A109926, A175956, A156695.

Cf. A000079, A010051, A006285.

Sequence in context: A174314 A237253 A080634 * A306260 A180227 A001468

Adjacent sequences:  A109922 A109923 A109924 * A109926 A109927 A109928

KEYWORD

easy,nonn

AUTHOR

Amarnath Murthy, Jul 17 2005

EXTENSIONS

Corrected and extended by T. D. Noe and Robert G. Wilson v, Jul 19 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 14 17:31 EDT 2019. Contains 328022 sequences. (Running on oeis4.)