This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A109919 a(1) = 1, then product of consecutive composite numbers sandwiched between primes. 3
 1, 2, 1, 3, 4, 5, 6, 7, 720, 11, 12, 13, 3360, 17, 18, 19, 9240, 23, 11793600, 29, 30, 31, 45239040, 37, 59280, 41, 42, 43, 91080, 47, 311875200, 53, 549853920, 59, 60, 61, 1072431360, 67, 328440, 71, 72, 73, 2533330800, 79, 531360, 83, 4701090240, 89 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(1) = a(3) = 1 as empty product is defined to be 1. The odd numbered terms are in A061214. - T. D. Noe, Oct 02 2012 LINKS FORMULA a(2n) = prime(n) and a(2n+1)= product of composite numbers between prime(n) and prime(n+1). a(2n) = A000040(n). a(2n+1) = A072472(n)/A000040(n+1). - R. J. Mathar, May 02 2007 MAPLE A109919 := proc(n) local p; if n mod 2 = 0 then ithprime(n/2) ; elif n = 1 then 1 ; else p := ithprime((n-1)/2) ; mul(i, i=p+1..nextprime(p)-1) ; fi ; end: for n from 1 to 80 do printf("%d, ", A109919(n)) ; od ; - R. J. Mathar, May 02 2007 CROSSREFS Cf. A109920. Cf. A072472. Cf. A061214 (product of composite numbers between primes). Sequence in context: A155963 A058684 A109920 * A082750 A048212 A077159 Adjacent sequences:  A109916 A109917 A109918 * A109920 A109921 A109922 KEYWORD easy,nonn AUTHOR Amarnath Murthy (amarnath_murthy(AT)yahoo.com), Jul 16 2005 EXTENSIONS More terms from R. J. Mathar, May 02 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .