login
A109882
Palindromes with either no internal digits or all internal digits are 0.
1
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 202, 303, 404, 505, 606, 707, 808, 909, 1001, 2002, 3003, 4004, 5005, 6006, 7007, 8008, 9009, 10001, 20002, 30003, 40004, 50005, 60006, 70007, 80008, 90009, 100001, 200002, 300003, 400004
OFFSET
1,3
COMMENTS
How is this sequence obtained from the given formula? What values for k are used? In particular, how are the terms a(1)-a(10) obtained using this formula? Using an inner loop for m and an outer loop for k, starting at m=1 and k=1, one obtains the infinite subsequence starting 11, 22, 33, 44, .... - Felix Fröhlich, Jul 26 2014
Answer, maybe: The formula is only supposed to produce the terms with more than one digit? - N. J. A. Sloane, Jul 27 2014
LINKS
FORMULA
The single-digit numbers, and then m*10^k + a where m is 1 to 9. [Revised by N. J. A. Sloane, Jul 27 2014]
MATHEMATICA
Join[Range[0, 9], 10#+First[IntegerDigits[#]]&/@Flatten[Table[FromDigits[PadRight[{d}, n, 0]], {n, 5}, {d, 9}]]] (* Harvey P. Dale, Oct 05 2023 *)
CROSSREFS
Sequence in context: A193413 A087992 A062687 * A109872 A030285 A283870
KEYWORD
base,nonn
AUTHOR
Amarnath Murthy, Jul 10 2005
EXTENSIONS
Corrected definition, fixed offset, extended. - David Wasserman, Oct 15 2008
0 added and name changed by Arkadiusz Wesolowski, Sep 07 2011
STATUS
approved