login
A109873
a(n) = product of terms in row n of Pascal's triangle (A001142) divided by n^k, where n^k is the largest power of n dividing it.
3
1, 1, 1, 6, 4, 125, 225, 336140, 2458624, 324060912, 8930250000, 835597712998125, 9001015156742400, 6600661714966989472803, 68987440762943255933340961, 28036608657071518646200652343750, 377177413291384771899817984000000
OFFSET
1,4
COMMENTS
If p is a prime then a(p) = A001142(p)/(p^(p-1)).
EXAMPLE
a(5) = 1*5*10*10*5*1/625= 4.
MAPLE
A001142 := proc(n) local k ; mul(k^(2*k-1-n), k=1..n) ; end: A109873 := proc(n) local a; a := A001142(n) ; while a mod n = 0 and a > 1 do a := a/n ; od; RETURN(a) ; end: seq(A109873(n), n=1..20) ; # R. J. Mathar, Aug 15 2007
CROSSREFS
Sequence in context: A354949 A239861 A266850 * A334806 A014403 A232818
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Jul 10 2005
EXTENSIONS
More terms from R. J. Mathar, Aug 15 2007
STATUS
approved