login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A109776 Self-describing numbers: reading the number gives a (possibly redundant) description of the number. 4
22, 4444, 224444, 442244, 444422, 666666, 10123133, 10123331, 10143133, 10143331, 10153133, 10153331, 10163133, 10163331, 10173133, 10173331, 10183133, 10183331, 10193133, 10193331, 10212332, 10213223, 10232132 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

From Robert G. Wilson v, May 05 2012: (Start)

If abcd… with a, b, c & d integers, then so is cdab… . As an example, since 10123133 is a member so must be 10123331, 10311233, 10313312, 10331231, 10333112, 12103133, 12103331, 12311033, 12313310, 12331031, 12333110, 31101233, 31103312, 31121033, 31123310, 31331012, 31331210, 33101231, 33103112, 33121031, 33123110, 33311012, 33311210.

Therefore 10123133 can be said to be the progenerator or the primitive self-describing number.

Also if we index the number abcd… from left to right, the sum of the odd indexes must equal the number of digits for unique even indexed digits.

Number of terms < 10^2n: 1, 2, 6, 1043, 5498, …, .

This sequence is finite with the last term is probably 9998979595959595848484848484848476737373737373736262626262625151515110.

(End)

LINKS

Robert G. Wilson v, Table of n, a(n) for n = 1..10538

The Prime Puzzles & Problems Connection by Carlos Rivera, Puzzle"> 324. Self-descriptive numbers

EXAMPLE

"22" does indeed consist of "two 2's".

MATHEMATICA

fQ[n_] := Block[{id = IntegerDigits[n]}, If[ OddQ[ Length[id]], Return[False], Union[Reverse@# & /@ Tally[id]] == Union@ Partition[id, 2]]]; k = 1; lst = {}; While[k < 10^7, If[fQ@ k, AppendTo[lst, k]; Print[k]]; k++]; lst (* Robert G. Wilson v, Apr 27 2012 *)

CROSSREFS

Cf. A108810, A173101, A005150.

Sequence in context: A114942 A155885 A218719 * A110802 A200460 A202054

Adjacent sequences:  A109773 A109774 A109775 * A109777 A109778 A109779

KEYWORD

nonn,base,fini

AUTHOR

Jud McCranie, Aug 15 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 21 14:40 EST 2018. Contains 299414 sequences. (Running on oeis4.)