%I
%S 0,0,1,0,1,1,0,1,2,2,0,1,3,3,3,0,1,4,4,5,5,0,1,5,5,7,8,8,0,1,6,6,9,11,
%T 13,13,0,1,7,7,11,14,18,21,21
%N Matrix defined by: a(i,0) = 0, a(i,j) = i*Fibonacci[j1] + Fibonacci[j], for j > 0; read by antidiagonals.
%C Lower triangular version is at A117915.  _Ross La Haye_, Apr 12 2006
%F a(i, 0) = 0, a(i, j) = i*Fibonacci[j1] + Fibonacci[j], for j > 0. a(i, 0) = 0, a(i, 1) = 1, a(i, 2) = i+1, a(i, j) = a(i, j1) + a(i, j2), for j > 2. G.f. = (x(1+ix))/(1xx^2)
%F Sum[a(ij+1, j), {j, 0, i+1}]  Sum[a(ij, j), {j, 0, i}] = A001595(i).  _Ross La Haye_, Jun 03 2006
%e {0};
%e {0,1};
%e {0,1,1};
%e {0,1,2,2};
%e {0,1,3,3,3};
%e {0,1,4,4,5,5};
%e {0,1,5,5,7,8,8}
%Y Rows: A000045(j); A000045(j+1), for j > 0; A000032(j), for j > 0; A000285(j1), for j > 0; A022095(j1), for j > 0; A022096(j1), for j > 0; A022097(j1), for j > 0. Diagonals: a(i, i) = A094588(i); a(i, i+1) = A007502(i+1); a(i, i+2) = A088209(i); Sum[a(ij, j), {j=0...i}] = A104161(i). a(i, j) = A101220(i, 0, j).
%Y Rows 7  19: A022098(j1), for j > 0; A022099(j1), for j > 0; A022100(j1), for j > 0; A022101(j1), for j > 0; A022102(j1), for j > 0; A022103(j1), for j > 0; A022104(j1), for j > 0; A022106(j1), for j > 0; A022107(j1), for j > 0; A022108(j1), for j > 0; A022109(j1), for j > 0; A022110(j1), for j > 0.
%Y a(2^i2, j+1) = A118654(i, j), for i > 0.
%K nonn,tabl
%O 0,9
%A _Ross La Haye_, Aug 11 2005; corrected Apr 14 2006
