This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A109712 UnitarySigmaUnitaryPhi(n) or USUP(n). 4
 1, 3, 2, 5, 4, 6, 6, 9, 8, 12, 10, 10, 12, 18, 8, 17, 16, 24, 18, 20, 12, 30, 22, 18, 24, 36, 26, 30, 28, 24, 30, 33, 20, 48, 24, 40, 36, 54, 24, 36, 40, 36, 42, 50, 32, 66, 46, 34, 48, 72, 32, 60, 52, 78, 40, 54, 36, 84, 58, 40, 60, 90, 48, 65, 48, 60, 66, 80, 44, 72, 70, 72, 72, 108, 48, 90, 60, 72, 78, 68 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n) is defined as follows. If n=Product p_i^r_i then a(n)= UnitarySigma(2^r_1) *UnitaryPhi(n/2^r_1) = (2^r_1+1)*Product(p_i^r_i-1), 22, e>0. - R. J. Mathar, Jun 02 2011 EXAMPLE a(2^4*7^2) = UnitarySigma(2^4) * UnitaryPhi(7^2) =17*48 = 816. MAPLE A109712 := proc(n)     local a ;     a := 1;     if n > 1 then         for pe in ifactors(n)[2] do             if op(1, pe) = 2 then                 a := a*(1+op(1, pe)^op(2, pe)) ;             else                 a := a*(op(1, pe)^op(2, pe)-1) ;             end if;         end do:     end if;     a ; end proc: seq(A109712(n), n=1..100) ; # R. J. Mathar, Sep 04 2018 MATHEMATICA A034448[n_] := Sum[If[GCD[d, n/d] == 1, d, 0], {d, Divisors[n]}]; A047994[n_] := Times @@ (Power @@@ FactorInteger[n] - 1); A006519[n_] := 2^IntegerExponent[n, 2]; a[1] = 1; a[n_ /; IntegerQ[Log[2, n]]] := n+1; a[n_] := A034448[ A006519[n] ]*A047994[ n/A006519[n] ]; Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Oct 03 2013 *) CROSSREFS Cf. A092760. Sequence in context: A075491 A089279 A049820 * A095049 A118209 A109451 Adjacent sequences:  A109709 A109710 A109711 * A109713 A109714 A109715 KEYWORD nonn,easy,mult AUTHOR Yasutoshi Kohmoto, Aug 08 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 24 14:49 EDT 2019. Contains 323532 sequences. (Running on oeis4.)