OFFSET
0,19
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
FORMULA
G.f.: 1/product(1-x^(4+5j), j=0..infinity). - Emeric Deutsch, Mar 30 2006
a(n) ~ Gamma(4/5) * exp(Pi*sqrt(2*n/15)) / (2^(19/10) * 3^(2/5) * 5^(1/10) * Pi^(1/5) * n^(9/10)) * (1 - (9*sqrt(6/5)/(5*Pi) + Pi/(120*sqrt(30))) / sqrt(n)). - Vaclav Kotesovec, Feb 27 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A284103(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 20 2017
EXAMPLE
a(30)=2 since 30 = 14+4+4+4+4 = 9+9+4+4+4
MAPLE
g:=1/product(1-x^(4+5*j), j=0..25): gser:=series(g, x=0, 95): seq(coeff(gser, x, n), n=0..90); # Emeric Deutsch, Mar 30 2006
MATHEMATICA
nmax=100; CoefficientList[Series[Product[1/(1-x^(5*k+4)), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 27 2015 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Erich Friedman, Aug 07 2005
EXTENSIONS
More terms from Michael Somos, Aug 10 2005
STATUS
approved